首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   

2.
The back-lit design is viable for the Si solar cell because Si is an indirect-gap semiconductor that requires a relatively long absorption depth. In this work, key parameters relating to the operation of the back-lit mono-crystalline Si solar cell are investigated by using the Medici device simulator. On the effect of the photon incident angle on the solar cell power, a reduction of as much as 16% is observed when the incident angle is reduced 3.8° from the vertical incidence. The ideal thickness of the p-type substrate that leads to the maximum cell power is found to be 70 μm or less. In the back-lit design, both the n-type collector contact and the p-type substrate contact are located on the front side. To the extent of the 10 μm-wide design investigated, it is found that the larger the n-type collector width, or the smaller the p-type substrate contact, the larger the cell power. In regards to the substrate and collector doping, the optimum doping concentrations leading to a maximum cell power of 2.28 × 10?2 W cm?2, or 22.8 mW cm?2, are found to be 1 × 1016 cm?3 and 1 × 1017 cm?3 for the substrate and the collector, respectively. In terms of the wavelength of the incident light, the cell power is nearly steady up to 0.8 μm, but decreases rapidly above, as the photon energy falls to near or under the energy gap. All considered, the back-lit design, which simplifies fabrication by putting both the cathode and the anode on the front side, is found to produce a cell power as little as 15% less than that of a standard front-lit design.  相似文献   

3.
In this paper, the commercial monodisperse TiO2 nanoparticles with the size of 8–10 nm were successfully applied to the photoelectrode for dye-sensitized solar cells (DSCs) and the influence of the thickness of the TiO2 thin films on the photovoltaic performance of the DSCs was investigated. The result revealed that the DSCs with the TiO2 thin film thickness of 3.6, 8.0, 11.6 and 20.0 μm gave the photoelectric conversion efficiency of 3.67%, 5.92%, 6.71% and 7.03%, respectively, under the illumination of simulated AM 1.5 sunlight (100 mW cm−2).  相似文献   

4.
《先进技术聚合物》2018,29(1):275-284
Biofouling of anion exchange membranes is a matter of concern in microbial fuel cell. In the present study, we have attempted to improve the antibiofouling potential of anion exchange membrane by using quaternized poly(ether ether ketone) (QPEEK) with surface modification by polydopamine. It is well known that the antiadhesion test tops the list in measuring the antibiofouling potential of the membrane and hence studied. In addition, the effect of dopamine concentration on membrane hydrophilicity and surface roughness was also discussed. From the data, it was clear that power density in all microbial fuel cells showed the highest in the sixth batch and thereafter declined, although at a varying rate. As predicted, QPEEK‐1.0 registered the least. The power density suffered a loss of 918 to 897 mW m−2 in the case of QPEEK‐1.0, which is the minimum and the same for QPEEK; QPEEK‐0.5 and AMI‐7001 were 918 to 869 mW m−2, 917 to 885 mW m−2, and 578 to 537 mW m−2, respectively. A least value of protein content was obtained for QPEEK‐1.0 (0.21 ± 0.05 g cm−2), and the same for QPEEK‐0.5, QPEEK, and AMI 7001 were found to be 0.37 ± 0.05 g cm−2, 0.78 ± 0.09 g cm−2, and 1.4 ± 0.11 g cm−2, respectively. In comparison, the antibiofouling potential of modified membranes was found to be higher than that of unmodified QPEEK and commercially available AMI 7001. The internal resistance values also confirmed that modification with PDA prevents bacteria adhesion leading to high antibiofouling potential.  相似文献   

5.
The feasibility of a new fabrication route for films of the attractive solar absorber Cu2ZnSnS4 (CZTS) has been studied, consisting of electrodeposition of metallic precursors followed by annealing in sulfur vapour. Photoelectrochemical measurements using a Eu3+ contact have been used to establish that the polycrystalline CZTS films are p-type with doping densities in the range (0.5–5) × 1016 cm−3 and band gaps of 1.49 ± 0.01 eV, making them suitable for terrestrial solar energy conversion. It has been shown that a somewhat Cu-poor composition favours good optoelectronic properties.  相似文献   

6.
We optimized photocatalytic hydrogen production over TiO2-based photocatalyst by varying the dopant (nickel and copper oxide), thin film active area, nature and concentration of sacrificial agents, and light intensity in a photoelectrochemical (PEC) cell/dye-sensitized solar cell (DSSC). Various characterization techniques have been used to investigate the structural, morphological, optical, and PEC behavior of single and codoped TiO2. The TiO2 decorated with both Cu and Ni oxides with active area of 1 cm2 in a mixture of 5 vol % glycerol and 1 M KOH under light intensity of 100 mWcm?2 produced the maximum hydrogen of 338.4 μmol cm?2 for 2 h. The superior photocatalyst performance of this photocatalyst is attributed to its small crystallite size and large pore size, as confirmed by X-ray diffractometer, Transmission electron microscopy (TEM), and surface area of Brunauer-Emmet-Teller (SBET). The absorption edges of this photocatalyst had the highest red shift compared with single doped and pure TiO2 because of more indirect transitions of the photoexcited electrons, greater charge carrier separation, and lower recombination rate. The photoanode active area of 1 cm2 with better photocatalytic performance correlated with the number of defects and grain boundaries. Glycerol shifted the conduction band of the photocatalyst to more negative flat potential compared with others. Increasing the concentration of glycerol further than 5 vol% saturated the photocatalyst active sites, increased photooxidation intermediates of glycerol, and reduced the hydrogen production. The light intensity had the maximum impact on the hydrogen production and could strongly control the number of charge carriers in both the PEC cell and the DSSC.  相似文献   

7.
《先进技术聚合物》2018,29(2):914-920
Doping a low‐bandgap polymer material (PDTBDT‐DTNT) as a complementary electron donor in poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyricacid methyl ester (PC61BM) blend is experimented to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The PCE of OSCs was increased from 3.19% to 3.75% by doping 10 wt% PDTBDT‐DTNT, which was 17.55% higher than that of the OSCs based on binary blend of P3HT:PC61BM (host cells). The short‐circuit current density (Jsc) was increased to 10.11 mA·cm−2 compared with the host cells. Although the PCE improvement could partly be attributed to more photon harvest for complementary absorption of 2 donors by doping appropriate PDTBDT‐DTNT, the promotion of charge separation and transport as well as the suppression of charge recombination due to a matrix of cascade energy levels is also important. And the better morphology of the active layer films is beneficial to the optimized performance of ternary devices.  相似文献   

8.
Organic solar cells (OSCs) harvesting indoor light are highly promising for emerging technologies, such as internet of things. Herein, the photovoltaic performance of PTB7-Th:PC71BM solar cells constructed using “optimized (with 1,8-diiodooctane (DIO))” and “non-optimized (without DIO)” processing conditions are compared for indoor and outdoor applications. We find that in comparison to the “optimized” solar cell, the “non-optimized” solar cell is less efficient under simulated solar light illumination (100 mW cm−2, spectral range 350–1100 nm), owing to significant bimolecular charge carrier recombination losses. However, under simulated indoor illumination (3.28 mW cm−2, spectral range 400–700 nm), bimolecular recombination losses are effective suppressed, thus the power conversion efficiency of the solar cell without DIO was increased to 14.7 %, higher than that of the solar cell with DIO (14.2 %). These results suggest that the common strategy used to optimize the OSCs could be undesired for indoor OSCs. We demonstrate that the efforts for realizing the desired “morphology” of the active layer for the outdoor OSCs may be unnecessary for indoor OSCs, allowing us to realize high-efficiency indoor OSCs using a non-halogenated solvent.  相似文献   

9.
The objective of the present study was to develop a predictive model for Photofrin®-mediated interstitial photodynamic therapy (I-PDT) of locally advanced tumors. Our finite element method was used to simulate 630-nm intratumoral irradiance and fluence for C3H mice and New Zealand White rabbits bearing large squamous cell carcinomas. Animals were treated with light only or I-PDT using the same light settings. I-PDT was administered with Photofrin® at 5.0 or 6.6 mg kg−1, 24 h drug-light interval. The simulated threshold fluence was fixed at 45 J cm−2 while the simulated threshold irradiance varied, intratumorally. No cures were obtained in the mice treated with a threshold irradiance of 5.4 mW cm−2. However, 20–90% of the mice were cured when the threshold irradiances were ≥8.6 mW cm−2. In the rabbits treated with I-PDT, 13 of the 14 VX2 tumors showed either local control or were cured when threshold irradiances were ≥15.3 mW cm−2 and fluence was 45 J cm−2. No tumor growth delay was observed in VX2 treated with light only (n = 3). In the mouse studies, there was a high probability (92.7%) of predicting cure when the initial tumor volume was below the median (493.9 mm3) and I-PDT was administered with a threshold intratumoral irradiance ≥8.6 mW cm−2.  相似文献   

10.
《先进技术聚合物》2018,29(1):612-622
Considering the poor dispersion and inert ionic conduction ability of carbon nanotubes (CNTs), functionalization of CNTs is a critical issue for their application in polymer electrolyte membranes. Herein, CNTs were functionalized by the polyelectrolyte, chitosan (CS), via a facile noncovalent surface‐deposition method. The obtained CS‐coated CNTs (CS@CNTs) were then incorporated into the CS matrix and fabricated composite membranes. The CS coating can enhance the compatibility between CNTs and the matrix, thus ensuring the homogenous dispersion of CS@CNTs and effectively improved the mechanical properties of the composites. Moreover, the CS coating can make CS@CNTs act as an additional proton‐conducting pathway through the membranes. The CS/CS@CNTs‐1 composite shows the highest proton conductivity of 3.46 × 10−2 S cm−1 at 80°C, which is about 1.5‐fold of the conductivity of pure CS membrane. Consequently, the single cell equipped with CS/CS@CNTs‐1 membrane exhibits a peak power density of 47.5 mW cm−2, which is higher than that of pure CS (36.1 mW cm−2).  相似文献   

11.
Micro-tubular solid-oxide fuel cell consisting of a 10-μm thick (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (ScSZ) electrolyte on a support NiO/(ScSZ) anode (1.8 mm diameter, 200 μm wall thickness) with a Ce0.8Gd0.2O1.9 (GDC) buffer-layer and a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)/GDC functional cathode has been developed for intermediate temperature operation. The functional cathode was in situ formed by impregnating the well-dispersed nano-Ag particles into the porous LSCF/GDC layer using a citrate method. The cells yielded maximum power densities of 1.06 W cm−2 (1.43 A cm−2, 0.74 V), 0.98 W cm−2 (1.78 A cm−2, 0.55 V) and 0.49 W cm−2 (1.44 A cm−2, 0.34 V), at 650, 600 and 550 °C, respectively.  相似文献   

12.
The 70 wt.% Mn-doped CeO2 (MDC)-30 wt.% Scandia-stabilized zirconia (ScSZ) composites are evaluated as anode materials for solid oxide fuel cells (SOFCs) in terms of chemical compatibility, thermal expansion coefficient, electrical conductivity, and fuel cell performance in H2 and CH4. The conductivity of MDC10 (10 mol.% Mn-doping), MDC20, and CeO2 are 4.12, 2.70, and 1.94 S cm−1 in H2 at 900 °C. With 10 mol.% Mn-doping, the fuel cells performances improve from 166 to 318 mW cm−2 in H2 at 900 °C. The cell with MDC10–ScSZ anode exhibits a better performance than the one with MDC20–ScSZ in CH4, the maximum power density increases from 179 to 262 mW cm−2. Electrochemical impedance spectra indicate that the Mn doping into CeO2 can reduce the ohmic and polarization resistance, thus leading to a higher performance. The results demonstrate the potential ability of MDC10–ScSZ composite to be used as SOFCs anode.  相似文献   

13.
Electrochemistry provides a simple and promising method for preparing organic solar cells (OSCs). In this paper, we present a two-step solution-based method to prepare bilayer heterojunction OSCs by electrodepositing polythiophene (PTh) and then spin-coating chloroform solution of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) onto the PTh layer. The influence of film thickness on performance of bilayer solar cells was investigated, and the best performance was achieved when the thickness of PTh and PCBM was 15 nm and 30 nm, respectively. The optimized solar cell showed power conversion efficiency of 0.1% under the illumination of AM 1.5 (100 mW cm−2) simulated solar light. This solution-based method offers a new way for processing bilayer OSCs.  相似文献   

14.
Doped graphene-based cathode catalysts are considered as promising competitors for ORR, but their power density has been low compared to Pt-based cathodes, mainly due to poor mass-transport properties. A new electrocatalyst for PEMFCs, an iodine doped grahene was prepared, characterized, and tested and the results are presented in this paper. We report a hybrid derived electrocatalyst with increased electrochemical active area and enhanced mass-transport properties. The electrochemical performances of several configurations were tested and compared with a typical Pt/C cathode configuration. As a standalone catalyst, the iodine doped graphene gives a performance with 60% lower than if it is placed between gas diffusion layer and catalyst layer. If it is included as microporous layer, the electrochemical performances of the fuel cell are with 15% bigger in terms of power density than the typical fuel cell with the same Pt/C loading, proving the beneficial effect of the iodine doped graphene for the fuel cell in the ohmic and mass transfer region. Moreover, the hybrid cathode manufactured by commercial Pt/C together with the material with best proprieties, is tested in a H2-Air fuel cell and a power density of 0.55 W cm−2 at 0.52 V was obtained, which is superior to that of a commercial Pt-based cathode tested under identical conditions (0.46 W cm−2).  相似文献   

15.
ZnO homojunction light emitting device (LED) with n-ZnO:Ga/p-ZnO:N structure was fabricated on sapphire substrate by metal organic chemical vapor deposition. The reproducible p-type ZnO:N layer with hole concentration of 1.29 × 1017 cm−3 was formed with NH3 as N doping source followed by thermal annealing in N2O plasma protective ambient. The device exhibited desirable rectifying behavior. Distinct electroluminescence emission centered at 3.2 eV and 2.4 eV were detected from this device under forward bias at room temperature. The intensive ultraviolet emission was comparable to the visible emission in the electroluminescence spectrum, which represent remarkable progress in the performance of ZnO homojunction LED.  相似文献   

16.
Crack-free thick ordered mesoporous TiO2 films with excellent optical quality have been synthesized by combination of “Doctor Blade” technique and a two-step evaporation induced self-assembly (EISA) method. By employing the as-synthesized mesoporous film with the thickness of 7 μm as the photoanode in dye-sensitized solar cell (DSC), a solar conversion efficiency of 6.53% has been obtained at 30 mW cm−2 light intensity.  相似文献   

17.
The effects of precursor solution concentration, composition, and spin-processing parameters on the thickness and electrical properties of ultra-smooth aluminum oxide phosphate (Al2O3−3x(PO4)2x or “AlPO”) thin films prepared using aqueous solutions are reported. Compositions were verified by electron probe micro-analysis and range from Al2O1.5(PO4) to AlPO4 (x = P:Al from 0.5 to 1.0). Film thicknesses were determined using X-ray reflectivity measurements and were found to depend systematically on solution concentration, P:Al ratio, and spin-speed. Metal-insulator-semiconductor devices were fabricated to determine electrical properties as a function of composition. As the P:Al ratio increased from 0.5 to 1.0, the dielectric constant decreased from 6.0 to 4.6, leakage currents increased from 0.45 to 65 nA cm−2 at 1 MV cm−1 and dielectric breakdown (defined as leakage currents >10 μA cm−2) decreased from 9.74 to 2.84 MV cm−1. These results establish composition, concentration, and spin-speed for the production of AlPO films with targeted thicknesses and electrical properties.  相似文献   

18.
Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm−2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.  相似文献   

19.
Two novel cyanine dyads, in which a naphthalimide unit is attached to benzoindole ring of unsymmetric trimethine cyanine, have been synthesized via ‘Click’ reaction and characterized by 1H NMR, 13C NMR, and MS-ESI. Under the illumination of AM 1.5 (75 mW cm−2), the power conversion efficiency of cyanine I reached 4.8% (Jsc = 14.5 mA cm−2, Voc = 0.50, FF = 0.49). The results show that the two cyanine dyes are promising sensitizers for nanocrystalline dye-sensitized solar cell.  相似文献   

20.
A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm−2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号