首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Ultrastructural aspects of leaf epicuticular wax structures were investigated in the garden strawberry Fragaria × ananassa by scanning and transmission electron microscopy. Both the adaxial and abaxial surfaces of two cultivars (Maehyang and Red Pearl) were collected and subjected to surface observations and ultrathin sections. The most prominent leaf epicuticular wax structures included membraneous platelets and angular rodlets. Most wax platelets were membraneous, and appeared to protrude from the surface at an acute angle. Angular rodlets were usually bent and had rather distinct facets in the abaxial surface of the two cultivars. Membraneous platelets were predominant on the adaxial surface of Maehyang, whereas the adaxial surface of Red Pearl was characterized by angular rodlets. However, both cultivars possessed angular rodlets on the abaxial surface, simultaneously. The combination of air-drying without vacuum and in-lens imaging of secondary electron signals with a field emission gun could impart the superb resolution at low electron dose with minimal specimen shrinkage. In vertical profiles of the leaf epidermis, epicuticular waxes were observed above the cuticle layer, and measured approximately as 50 nm in thickness. The natural epicuticular waxes were seemingly mixtures of electron-dense microfibrils, and heterogeneous in shape on ultrathin sections. Distinct crystal-like strata could be hardly discernable in the wax structures. These results suggest that the garden strawberry has the nature of syntopism within one plant and polymorphism within the same species in the formation and occurrence of leaf epicuticular waxes.  相似文献   

2.
A “surface science approach” is used to investigate the growth process of tubular wax structures on plant leaves: natural epicuticular wax from nasturtium leaves, mainly consisting of (S)-nonacosan-10-ol, has been recrystallized on artificial substrates of different structure and polarity, namely HOPG, glass and silicon oxide, and the growth process and structure have been studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM). As a result the tubular structure as found on the living leaves is reproduced independent of the nature of the substrate and the way of wax deposition. Prerequisite for tubule formation, however, is the admixture of a few percent of alkyl-diols to the nonacosan-10-ol as shown with artificial mixtures of both components.  相似文献   

3.
The surface properties of nanofibres are of importance in various applications. In this work, electrospun polyamide nanofibres were used as substrates for creating functional nanostructures on the nanofibre surfaces. A RF magnetron sputter coating was used to deposit the functional layer of titanium dioxide (TiO2) onto the nanofibres. Atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscopy (ESEM) were employed to study the topography, grain structure and wetting of the nanofibre surfaces, respectively. The AFM results indicated a significant difference in the morphology of the nanofibres before and after the TiO2 sputter coating. The XRD analysis showed the amorphous structures of the TiO2 deposition layer. XPS spectra reflected the chemical features of the deposited nanostructures. The ESEM observation revealed that the surface wettability of TiO2 sputter coated nanofibres was significantly improved after UV irradiation.  相似文献   

4.
In this study, the surface morphology and structure of dentin after ablation by ultra-short pulses were evaluated using environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM). The dentin specimens examined were irradiated by a chirped-pulse-amplification (CPA) Ti:sapphire laser (800 nm) and the optimal conditions for producing various nanostructures were determined. Based on the ESEM results, it was possible to identify an energy density range as the ablation threshold for dentin. The laser-induced damage was characterized over the fluence range 1.3-2.1 J/cm2. The results demonstrate that by selecting suitable parameters one can obtain efficient dentin surface preparation without evidence of thermal damage, i.e., with minimized heat affected zones and reduced collateral damage, the latter being normally characterized by formation of microcracks, grain growth and recrystallization in the heat affected zones.  相似文献   

5.
A combined atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) study of tungsten oxide model catalysts is presented. The model catalysts were prepared by applying the real preparation method to a ZrO2(1 0 0) single crystal support. AFM imaged several granular structures of scattered dimensions on the surface of ZrO2(1 0 0) in the as prepared samples. After heating, at low loading the tungsten species rearranged into small WOx particles strongly interacting with the substrate. At high tungsten content large WO3 aggregates also formed. XPS analysis confirmed these changes. The estimated surface density of the interacting W-containing species closely matched that of real catalysts.  相似文献   

6.
We present detailed study of structure and interface morphology of an electrodeposited Cu/Ni film using X-ray diffraction, X-ray reflectivity, neutron reflectivity and atomic force microscopy (AFM) techniques. The crystalline structure of the film has been determined by X-ray diffraction, which suggest polycrystalline growth of the film. The depth profile of density in the sample has been obtained from specular X-ray and neutron reflectivity measurements. AFM image of the air-film interface shows that the surface is covered by globular islands of different sizes. The AFM height distribution of the surface clearly shows two peaks and the relief structure (islands) on the surface in the film, which can be treated as a quasi-two-level random rough surface structure. We have demonstrated that the detailed morphology of air-film interfaces, the quasi-two-level surface structure as well as morphology of the buried interfaces can be obtained from off-specular neutron reflectivity data. AFM and off-specular neutron reflectivity measurements also show that the morphologies of electrodeposited surface is distinctively different as compared to that of sputter-deposited surfaces in the sample.  相似文献   

7.
Using the autocorrelation of speckles in the deep Fresnel region is a novel approach to measuring surface parameters of a rough surface. In this letter, we construct a scanning system using a fibre-optic probe for detecting the speckle field with excellent resolution. By relating the autocorrelation function of the speckle intensity and the surface height with the Kirchhoff approximation theory, we realise the measurement of the surface parameters. Three parameters, i.e. the roughness w, the lateral correlation length ξ and roughness exponent α are extracted. We measure two sample surfaces in the experiment, and the results are consistent with those measured by atomic force microscope (AFM).  相似文献   

8.
《Nuclear Physics A》1986,453(2):349-364
Energy spectra of light particles emitted in the interaction of 84 MeV·A 18O and 48 MeV·A20Ne ions with different targets have been measured with telescopes consisting of NaI, BGO and surface-barrier detector stacks. The inclusive data have been analysed within a moving-source parametrization. By using a large-area plastic-scintillator detector arrangement covering the target with a solid angle of about 2π, light-charged-particle multiplicity distributions have been measured and multiplicity-selected light-particle spectra have been obtained. It is shown that multiplicity selection allows a rough separation of peripheral and central processes and will be a suitable means for probing different theoretical models of nucleon emission.  相似文献   

9.
The magnetic polariton propagation in metamagnet layered structures is theoretically studied by using a transfer matrix approach. The layered structures considered here are made up by the stacking of two different layers (also known as building blocks, named A and B), where one of them is a metamagnetic thin film (A), while the other is a non-magnetic insulator thin layer (B). We take into account both the antiferromagnetic (AFM) and ferromagnetic (FM) phases of the metamagnetic material. For the periodic arrangement, the bulk modes are characterized by two large symmetric bands, with non-reciprocal surface modes between them. The quasiperiodic metamagnetic structure is then built up by following the Fibonacci sequence, whose long-range order effect is then investigated, giving rise to an interesting self-similar spectra and a power-law profile.  相似文献   

10.
《Surface science》1989,219(3):L565-L570
Photoemission experiments show that graphitic overlayers obtained by cracking ethylene on Ni(110) have a significantly different structure from graphite carbon on Ni(111) or Ni(100). Analyses of our data suggest that a complete overlayer of graphite in register with the substrate cannot be formed because of the rough structure of the Ni(110) face. Nevertheless a graphitic-like structure with much of the pz orbitals saturated can grow along the channels of the (110) surface. These findings are consistent with a previous model deduced by surface extended energy loss experiments performed on the same system.  相似文献   

11.
Dry coating experiments were performed by using the Hybridizer (Nara). Large host silica gel (SG) particles (d50 = 55 μm) were coated with fine invited particles of magnesium stearate (MS, d50 = 4.6 μm) for different contents of MS in the mixture. The real MS mass fraction wI obtained after mechanical treatment has been determined thanks to calibration from TGA measurements. The surface structure and morphology of MS coatings were observed using environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) [Y. Ouabbas, A. Chamayou, L. Galet, M. Baron, J. Dodds, A.M. Danna, G. Thomas, B. Guilhot, P. Grosseau, Modification of powders properties by dry coating: some examples of process and products characteristics, Proceedings of CHISA2008, Prague, August 2008, submitted for publication; L. Galet, Y. Ouabbas, A.M. Danna, G. Thomas, P. Grosseau, M. Baron, A. Chamayou, Surface morphology analysis and AFM study of silica gel particles after mechanical dry coating with magnesium stearate, Proceedings of PSA2008, UK, September 2008, submitted for publication].AFM has been also used to measure the adhesion forces between particles. Interaction forces between the material attached to the cantilever (magnesium stearate MS) and the surface of the composite material (silica gel SG or magnesium stearate MS) have been determined at different surface locations. For different compositions wI of the mixture MS-SG, the numeric distribution and the mean value f of the forces fH obtained for MS-SG interactions or fI for MS-MS interactions have been established and the experimental curve showing the evolution of f versus wI has been derived.Models of ordered structures have been developed, implying morphological hypotheses concerning large spherical or cylindrical host particles H and small invited spherical I. Different types of distribution of I materials onto the surface of H have been considered: for examples a discrete monolayer - or multilayers - of monosized particles I on the H surface. The coordinence of MS particles around SG particles has been estimated to calculate the free SG surface fraction through different modelling and to obtain the mean force f versus composition wI. The theoretical force values have been compared to experimental ones. The deviations have been discussed in terms of guest particle distributions on the surface of the large host particles and morphological hypotheses.  相似文献   

12.
张静  孙润广 《中国物理》2002,11(8):776-784
The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline state have been investigated using an atomic force microscope (AFM). We have observed the inelastic deformation of the sample surface. The AFM tip causes persistent deformation of the surface of the lipid membrane, in which some of the lipid molecules are eventually pushed or dragged by the AFM tip. The experiment shows how the surface structure of the lipid membrane can be created by the interaction between the AFM tip and lipid membrane. When the operating force exceeds 10-8 N, it leads to large deformations of the surface. A square region of about 1×1μm2 is created by the scanning probe on the surface. When the operating force is between 10-11N and 10-8N, it can image the topography of the surface of the lipid membrane. The stability of the sample is related to the concentration of the medium in which the sample is prepared.  相似文献   

13.
In this paper, the atomic force microscopy (AFM)-based 2-D pushing of nano/microparticles investigated on rough substrate by assuming a multipoint contact model. First, a new contact model was extracted and presented based on the geometrical profiles of Rumpf, Rabinovich and George models and the contact mechanics theories of JKR and Schwartz, to model the adhesion forces and the deformations in the multipoint contact of rough surfaces. The geometry of a rough surface was defined by two main parameters of asperity height (size of roughness) and asperity wavelength (compactness of asperities distribution). Then, the dynamic behaviors of nano/microparticles with radiuses in range of 50–500 nm studied during their pushing on rough substrate with a hexagonal or square arrangement of asperities. Dynamic behavior of particles were simulated and compared by assuming multipoint and single-point contact schemes. The simulation results show that the assumption of multipoint contact has a considerable influence on determining the critical manipulation force. Additionally, the assumption of smooth surfaces or single-point contact leads to large error in the obtained results. According to the results of previous research, it anticipated that a particles with the radius less than about 550 nm start to slide on smooth substrate; but by using multipoint contact model, the predicted behavior changed, and particles with radii of smaller than 400 nm begin to slide on rough substrate for different height of asperities, at first.  相似文献   

14.
Bioactivity in vivo of ceramic materials has been related to their surface micro-topography and may be estimated by means of simulated body fluid method in vitro. In order to investigate the effect of surface topographies of akermanite ceramics on bioactivity in vitro, akermanite ceramics were synthesized by sol-gel method and different surface topographies of disc-shaped akermanite ceramics were prepared by polishing with different SiC sandpapers. Atomic force microscopy (AFM) was used to evaluate the surface morphology and roughness. The bioactivity in vitro of ceramics with different surface states was evaluated by soaking the ceramics in simulated body fluid (SBF). And the samples after being soaked were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). The results showed that the amounts of precipitated apatite on the ceramics with different surface roughness after being soaked in SBF were different and the bioactivity in vitro of ceramic with rough surface was significantly higher than that of ceramic with smooth surface. The study suggested that suitable surface roughness may improve the bioactivity in vitro of akermanite ceramics.  相似文献   

15.
The surface morphology, structure, mechanical properties, and physical transition temperatures of film compositions between methylcellulose (MC) and colloidal silver dispersions (CSDs) stabilized by poly-N-vinylpyrrolidone (PVP) are studied via atomic-force microscopy (AFM), X-ray diffraction and thermomechanical analyses, and mechanical tests. It is established that composite films exhibit the characteristic granular (nanodomain) surface morphology. When the CSD content in the compositions increases, the degree of ordering of MC macromolecules enhances, grain sizes decrease from ~75 to ~60 nm (at 3 and 20 wt % of the CSD, respectively), and the film surface relief becomes smoother. For example, the surface roughness of composite films is three times less than that of the initial MC film. In other words, owing to CSD introduction, film compositions are structurized at the nanolevel. In this case, Young’s modulus and the yield stress of composite films increase successively. High-temperature heating increases the average nanodomain size to 120–180 nm (for mixtures with 20 wt % of the CSD) and stimulates the local ordering of MC macromolecular fragments with sizes of ~3–5 nm.  相似文献   

16.
《Surface science》1994,316(3):L1075-L1080
The surface morphology of epitaxial (001) Si1−x Gex films, subject to biaxial strain, is studied by atomic force microscopy (AFM). Distinct facets are observed, oriented on {105}, {311}, and {518} crystal faces. The tiled arrangement of facets resembles a mosaic. We find that the growth sequence begins with the shallow {105} facets, followed by the appearance of steeper facets. After strain relaxation, the morphology coarsens and facets become less distinct. The existence of discrete facets produces a kinetic barrier to strain-induced roughening; and we show that increasing this barrier (by growing at reduced strain or reduced temperature) leads to a flatter surface morphology.  相似文献   

17.
The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.  相似文献   

18.
Nitrogen atoms adsorbed on a Fe(100) surface cause the formation of an ordered c(2 × 2) overlayer with coverage 0.5. A structure analysis was performed by comparing experimental LEED IV spectra with the results of multiple scattering model calculations. The N atoms were found to occupy fourfold hollow sites, with their plane 0.27 Å above the plane of the surface Fe atoms. In addition, nitrogen adsorption causes an expansion of the two topmost Fe layers by 10% (= 0.14 Å). The minimum r-factor for this structure analysis is about 0.2 for a total of 16 beams. The resulting atomic arrangement is similar to that in the (002) plane of bulk Fe4N, thus supporting the view of a “surface nitride” and providing a consistent picture of the structural and bonding properties of this surface phase.  相似文献   

19.
The effect of enzymes: lipase from Candida cylindracea (LCc), phospholipase A2 from hog pancreas (PLA2) and phospholipase C from Bacillus cereus (PLC) to modulate wetting properties of solid supported phospholipid bilayers was studied via advancing and receding contact angle measurements of water, formamide and diiodomethane, and calculation of the surface free energy and its components from van Oss et al. (LWAB) and contact angle hysteresis (CAH) approaches. Simultaneously, topography of the studied layers was determined by Atomic Force Microscopy (AFM). The investigated lipid bilayers were transferred on mica plates from subphase of pure water by means of Langmuir-Blodgett and Langmuir-Schaefer techniques. The investigated phospolipid layers were: saturated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), unsaturated DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and their mixture DPPC/DOPC. The obtained results revealed that the lipid membrane degradation by the enzymes caused increase in its surface free energy due to the amphiphilic hydrolysis products, which may accumulate in the lipid bilayer. In result activity of the enzymes may increase and then break down the bilayer structure takes place. It is likely that after dissolution of the hydrolysis reaction products in the bulk phase, patches of bare mica surface are accessible, which contribute to the apparent surface free energy changes. Comparison of AFM images and the free energy changes of the layers gives better insight into changes of their properties. The observed gradual increase in the layer surface free energy allows controlling of the hydrolysis process to obtain the surfaces of defined properties.  相似文献   

20.
The electronic and the structural properties of n-GaAs layers grown on rough surface of silicon substrate by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL), time resolved photoluminescence (TRPL) and high resolution X-ray diffraction (HRXRD). The relationship between electronic and structural properties of the n-GaAs layer was checked, showing that the defect density is a strong cause for trapping the minority carriers. The impact of introducing intermediate rough silicon layer between silicon substrate and n-GaAs layer on the electronic properties was observed, showing that the structure grown on rough Si involves higher lifetime than those developed on flat silicon substrate. Such structure could be used for economic solar cells fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号