首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.  相似文献   

2.
We propose an efficient approach to develop large-range liquid level sensors based on an extrinsic Fabry–Perot optical fibre interferometer with an all fused-silica structure and CO2 laser heating fusion bonding technology. The sensor exhibits signatures of a high sensitivity of 5.3 nm/kPa (36.6 nm/psi), a resolution of 6.8 Pa (9.9×10−4 psi) and an extreme low temperature dependence of 0.013 nm/°C. As a result, a high resolution of the water level measurement of approximately 0.7 mm on the length scale of 5 m and small errors of the water pressure measurement induced by the temperature dependence within 0.0025 kPa/°C (0.00036 psi/°C, water level 0.25 mm/°C) are achieved, thus providing useful applications for the detection of the large-range liquid level in harsh environments.  相似文献   

3.
Single walled carbon nanotube (SWNT)/fabric composite materials were manufactured using two simple manufacturing processes. The first method is direct deposition of SWNTs by either a spray method or by incubation; the other is a Quasi-Langmuir–Blodgett (QLB) transfer technique. The composite retains high mechanical strength (governed by the fabric), and good electrical properties (determined by the nanotubes). We measure the DC electrical conductivity of the composite fabric to be 5.33 S/cm for the sprayed tubes, 13.8 S/cm for the incubated SWNTs, and 8 S/cm for the QLB transferred tubes; these values are limited not by the nanotube network, but by the surface roughness of the fabric itself. Measurements of the conductivity up to 1 MHz reveal a transport process that proceeds along a random network, with barriers separating the various nanotubes. The material is resistive both to changes in temperature (range of 0–80 °C) and mechanical deformations. The conductivity of the composite decreases by less than 10% when bent around a cylinder of 1 cm diameter.  相似文献   

4.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

5.
Osmotic dehydration (OD) of carambola slices were carried out using glucose, sucrose, fructose and glycerol as osmotic agents with 70 °Bx solute concentration, 50 °C of temperature and for time of 180 min. Glycerol and sucrose were selected on the basis of their higher water loss, weight reduction and lowers solid gain. Further the optimization of OD of carambola slices (5 mm thick) were carried out under different process conditions of temperature (40–60 °C), concentration of sucrose and glycerol (50–70 °Bx), time (180 min) and fruit to solution ratio (1:10) against various responses viz. water loss, solid gain, texture, rehydration ratio and sensory score according to a composite design. The optimized value for temperature, concentration of sucrose and glycerol has been found to be 50 °C, 66 °Bx and 66 °Bx respectively. Under optimized conditions the effect of ultrasound for 10, 20, 30 min and centrifugal force (2800 rpm) for 15, 30, 45 and 60 min on OD of carambola slices were checked. The controlled samples showed 68.14% water loss and 13.05% solid gain in carambola slices. While, the sample having 30 min ultrasonic treatment showed 73.76% water loss and 9.79% solid gain; and the sample treated with centrifugal force for 60 min showed 75.65% water loss and 6.76% solid gain. The results showed that with increasing in treatment time the water loss, rehydration ratio were increased and solid gain, texture were decreased.  相似文献   

6.
This study investigated the effect of annealing temperature on the precipitation behavior of Crofer® 22 H at 600 °C, 700 °C, and 800 °C. The grain size distribution, precipitate phase identification, and microstructure were analyzed using electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDS). The morphology of Laves phase (Fe,Cr,Si)2(Nb,W) precipitates having the Cr2Nb structure changed from strip-like to needle-shaped as the annealing temperature was increased. The precipitates of the Laves phase also shifted from the grain boundaries to the grain interiors when the temperature was increased. However, the average grain size (150 μm) of the ferritic matrix did not significantly change at 600 °C, 700 °C, and 800 °C for 10 h.  相似文献   

7.
Direct experimental measurements of the thermo-optic for fixed temperature intervals (20–200 °C, 200–500 °C, 500–660 °C, 660–780 °C) in fused silica fiber containing fiber Bragg gratings (FBGs) were conducted. The diffraction efficiency of a FBG fluctuated with temperature between 2.01 × 10? 4 and 0.17 × 10? 4 while the temperature shift of the Bragg's peak was monitored between 1300 and 1311 nm with sub-Angstrom precision. Numerical simulations were focused on FBG's diffraction efficiency calculations accounting for the temperature drift of the gratings, and found to be in excellent agreement with obtained experimental data.It was found that the first-order thermo-optic coefficient changes between 1.29 and 1.85 × 10? 5 K? 1 for the linear fit and at T = 0 °C its value was found to be close to 2.37 × 10? 5 K? 1 for the polynomial fit of experimental data. The average thermo-optic coefficient undergoes a minimum in the vicinity of 440 °C. Additional observation indicates a negative sign of the second-order thermo-optic coefficient. The value of thermal expansion coefficient was much less (0.5 × 10? 6 K? 1) than that for the average thermo-optic coefficient. Based on the energy dispersive spectroscopy it was determined that thermal erasing of the FBGs at a temperature around 780 °C corresponds to germanium monoxide diffusion out of core in silica-based fibers.  相似文献   

8.
A Regenerated Fibre Bragg Grating (RFBG), with repeatable high temperature response between 400 °C–1200 °C, has been demonstrated using a hydrogen-loaded, highly germanium-doped, photosensitive fibre. A wavelength shifts of as much as 20 nm is attained during temperature calibration up to 1300 °C. A large temperature response of 17 pm/°C is obtained from the RFBG, with very good repeatability.  相似文献   

9.
The influence of temperature on optical measurements has been studied for determining fat and protein contents in complex food systems. A model system consisting of mixtures of fat, protein, water and emulsion was developed to create an imitation of complex food systems. The changes in optical properties of the system from 25 °C to 40 °C were measured in the wavelength from 1100 nm to 1670 nm. Irregular changes as a whole were founded and therefore a statistical method was needed to correct the temperature effect. A method called global robust temperature calibration model is proposed and the correction effect was validated. The results indicated that it can significantly reduce the temperature effect on optical measurement.  相似文献   

10.
The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800–1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500–600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900–1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.  相似文献   

11.
The quality crystals (Calcitic limestone) were selected using the UV–visible methylene blue adsorption method. The thermostimulated luminescence (TSL) glow curve characteristics of six well crystallized limestone samples were analyzed. The glow curves of unannealed sample show only one peak in the range 320–330 °C. The sample irradiated with a gamma dose of 100 Gy shows two additional peaks in the range of 113–125 °C and 242–260 °C when recorded with linear heating rate of 10 °C/s. The annealed sample also shows the same trend as that of irradiated sample. Annealing treatment above 250 °C increases the sensitivity of all TSL peaks except 320 °C. On the other hand, annealing at 750 °C caused a collapse in the TSL sensitivity. The enhancement in TSL sensitivity was found to depend on the annealing temperature and time. Annealing treatment at 650 °C for 4 h followed by quenching in air is the optimum condition for TSL sensitization. The response to gamma irradiation is linear in the range from 0.5 Gy to 104 Gy. The emission spectra of all the samples show an emission at around 610 nm but with different intensities for each TSL peak. With reference to earlier work, it may be assumed that the recombination site always involves Mn2+ ions. The observation made through infra-red (IR) and X-ray diffraction (XRD) studies with thermal treatment shows the structural changes of calcite from D3h to Cs symmetry at 750 °C. The Thermogravimetric-Differential Thermal Analysis (TG-DTA) analysis shows the calcite gets disordered at 760 °C. Hence, the collapse in the TSL sensitivity at 750 °C is due to structural change or structural disorderedness.  相似文献   

12.
LiCaAlF6 (LiCAF) crystals doped with two different ions (europium and lead) have been investigated as potential new dosimetric materials. The stability of thermally stimulated luminescence (TSL) glow peaks in LiCAF:Eu was evaluated by means of the initial rise technique. The decay times at room temperature of the traps related to the dosimetric glow peaks were found to range between 40 and 2 × 104 years confirming the good dosimetric characteristics of this crystal. The glow curve of LiCAF:Pb is dominated by a peak at approximately 300 °C emitting in the UV region (3P0,11S0 transition of Pb2+) superimposed to a very broad structure at lower temperature (20–200 °C) featuring recombination at an intrinsic defect centre. The anomalous behavior of the low temperature structure during thermal cleaning procedures prevented any reliable numerical analysis of the TSL glow peak at 300 °C.  相似文献   

13.
Synthesis of scorodite (FeAsO4·2H2O) using dynamic action agglomeration and the oxidation effect from ultrasound irradiation was investigated. The effect of different reaction temperatures (90, 70, 50, and 30 °C) on the size and morphology of scorodite particles synthesized under O2 gas flow and ultrasound irradiation was explored because the generation of fine bubbles depends on the solution temperature. At 90 °C, the size of scorodite particles was non-homogeneous (from fine particles (<1 μm) to large particles (>10 μm)). The oxidation–reduction potential (ORP) and yield at 90 °C showed lower values than those at 70 °C. The scorodite particles, including fine and non-homogeneous particles, were generated by a decrease in the oxidation of Fe(II) to Fe(III) and promotion of dissolution caused by the generation of radicals and jet flow from ultrasound irradiation. Using ultrasound irradiation in the synthesis of scorodite at low temperature (30 °C) resulted in the appearance of scorodite peaks in the X-ray diffraction (XRD) pattern after a reaction time of 3 h. The peaks became more intense with a reaction temperature of 50 °C and crystalline scorodite was obtained. Therefore, ultrasound irradiation can enable the synthesis of scorodite at 30 °C as well as the synthesis of large particles (>10 μm) at higher temperature. Oxide radicals and jet flow generated by ultrasound irradiation contributed significantly to the synthesis and crystal growth of scorodite.  相似文献   

14.
Effect of annealing temperature on characteristics of sol–gel driven ZnO thin film spin-coated on Si substrate was studied. The UV–visible transmittance of the sol decreased with the increase of the aging time and drastically reduced after 20 days aging time. Granular shape of ZnO crystallites was observed on the surface of the films annealed at 550, 650, and 750 °C, and the crystallite size increased with the increase of the annealing temperature. Consequently nodular shape of crystallites was formed upon increasing the annealing temperature to 850 °C and above. The current–voltage characteristics of the Schottky diodes fabricated with ZnO thin films with various annealing temperatures were measured and analyzed. It is found that, ZnO films showed the Schottky characteristics up to 750 °C annealing temperature. The Schottky diode characteristics were diminished upon increasing the annealing temperature above 850 °C. XPS analysis suggested that the absence of oxygen atoms in its oxidized state in stoichiometric surrounding, might be responsible for the diminished forward current of the Schottky diode when annealed above 850 °C.  相似文献   

15.
By deposition of metallic vanadium on FTO substrate in Argon atmosphere at room temperature, the sample was then annealed in furnace for 2 h at the temperature of 410 °C in air ambient. (1 1 0) -orientated vanadium dioxide films were prepared on the FTO surface. A maximum transmittance of ∼40% happened at 900–1250 nm region at room temperature. The change of optical transmittance at this region was ∼25% between semiconducting and metallic states. In particular, vanadium dioxide thin films on FTO exhibit semiconductor–metal phase transition at ∼51 °C, the width of the hysteresis loop is ∼8 °C.  相似文献   

16.
Transparent ZnO layers were prepared on silica glass substrates by the spin coating-pyrolysis process. As-deposited films were pre-fired at 250 °C for 60 min, at 350 °C for 30 min, and at 500 °C for 10 min, followed by heat treatment at 900 °C for 30 min in air. The ZnO films were analyzed by high resolution X-ray diffraction, field emission-scanning electron microscopy, scanning probe microscopy, and ultraviolet–visible–near infrared spectrophotometry. (0 0 2)-oriented ZnO films were obtained by pre-firing at 350 °C and at 500 °C. All the ZnO films exhibited a high transmittance, above 80%, in the visible region, and showed a sharp fundamental absorption edge at 0.38–0.40 μm. The most highly c-axis-oriented ZnO with a homogeneous surface was observed at a pyrolysis temperature of 350 °C.  相似文献   

17.
Borate based thermoluminescence dosimeters (TLD) show high sensitivity and good TL characteristics. One of the promising material amongst the dosimeters is Dy doped CaB4O7. Spectrally resolved thermoluminescence of Dy doped CaB4O7 shows three glow peaks at about 50 °C, 240 °C and 380 °C, the intensity of the 240 °C glow peak being the maximum. All TL experiments were conducted on a high sensitivity TL spectrometer at Sussex University with a heating rate of 50 °C min?1. Two main emissions associated with the Dy dopant are observed at ~480 and 580 nm. The samples were subjected to a series of treatments including excitation by X-rays and UV laser radiation. As part of the present research CaB4O7:Dy materials were subjected to two different heat treatments; quenching and slow cooling in order to investigate the changes in TL characteristics.  相似文献   

18.
Lead zirconate titanate (PZT) nano-powder was prepared by a triol sol–gel process. X-ray diffraction and transmission electron microscopy results showed that as-synthesized amorphous powder started to crystallize at the calcination temperature above 500 °C. The crystalline powder was formed into pellets and sintered at temperatures between 900 and 1300 °C. Co-existence of tetragonal and rhombohedral phase was observed in all ceramics. Microstructural investigation of PZT ceramics showed that uniform grain size distribution with average grain size of ∼0.8–2.5 μm were received with sintering temperature up to 1200 °C. Further increasing the temperature caused abnormal grain growth with the grain as large as 13.5 μm. An attempt to optimize densification with uniform grain size distribution was also performed by varying heating rate and holding time during sintering. It was found that dense (∼97%) sol–gel derived PZT ceramic with uniform microstructure was achieved at 1100 °C with a heating rate of 5 °C min−1 and 6 h dwell time.  相似文献   

19.
《Solid State Ionics》2006,177(19-25):1849-1853
Single phase materials of the La(2−x)SrxMnOδ (0.6  x  2.0) solid solution series were prepared via solid state reaction. The structure of each material was examined at room temperature and determined to be tetragonal for all phases examined. An expansion in lattice volume was observed on increasing lanthanum content. The stability and thermal expansion of each member of the solid solution series was determined via the use of in situ high temperature X-ray diffraction. It was found that all materials remained stable up to a temperature of 800 °C. Thermal expansion coefficients were found to be in the region of 15 × 10 6 K 1 for La(2−x)SrxMnOδ compounds where x > 1.4. The electrical conductivity of each phase was also determined over a similar temperature range with a maximum value of ∼6 Scm 1 at 900 °C for the x = 1.8 phase.  相似文献   

20.
These last past years, a major interest has been devoted to decrease the working temperature of solid oxide fuel cells (SOFCs) down to about 700 °C.Apatite materials (La10 ? xSrxSi6O27?x/2) are attractive candidates for solid electrolytes, with a high ionic conductivity at these intermediate temperatures. An apatite powder (x = 1) with a 0.75 µm mean particle size, produced by solid state reaction, was tape cast to obtain green sheets with a thickness of about 260 µm.On one hand, the densification mechanism of the apatite ceramic during the intermediate solid state sintering has been approached. It appeared from the kinetical tests performed under isothermal conditions between 1250 and 1550 °C, that densification could be controlled by the diffusion at grain boundaries of the rare-earth element, La, with an activation energy of 470 kJ/mol.On the other hand, conductivity measurements were performed on apatite samples sintered at 1400 and 1500 °C. The ionic conductivity was mainly sensitive to the presence of secondary phases at 1400 °C. The ionic conductivity of the apatite sintered at 1500 °C (mean grain size = 3.9 µm) is equal to 1.2 × 10? 2 S/cm at 700 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号