首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Solid State Sciences》2003,5(8):1079-1086
Megawatt ArF laser irradiation of gaseous disiloxanes [(CH3)nH3−nSi]2O, n=1,2,3 results in chemical vapour deposition of nano-sized polyoxocarbosilane powders that have large surface area, possess all possible SiCxHyOz (x+y+z=4) configurations, contain SiH bonds and possess unpaired electron in orbital of Si atoms. The powders show superior thermal stability by losing only several weight per cent upon heating to 750 °C.  相似文献   

2.
Structures, binding energies, harmonic frequencies, dipole moments, HOMO–LUMO energy gaps and particularly atoms in molecules (AIM) analyses of some nanoannular carbon clusters (C4–C20) are investigated at B3LYP/6-31+G(d) level of theory. No correlation is found by plotting the calculated binding energies as a functional number of carbon atoms of carbon clusters. The calculated binding energies sharply increase from C4 to C10 while slowly from C10 to C20. The binding energies of C4n+2 clusters including C6, C10, C14, and C18 have a clear increase when compared with others indicating their aromatic characters which is confirmed by results of HOMO–LUMO energy gaps and geometrical parameters. AIM analyses show that most of our carbon clusters are topologically normal (non-conflict) with stable structures. Nevertheless, the topological networks of small antiaromatic rings, C4 and C8, at their equilibrium geometries may change via molecular vibrations. The existence of straight bond paths in 3D molecular graphs of carbon clusters with n > 10 implies that ring strains are decreased as the ring sizes grow. Except for C4 and C8, the ellipticity values for the remaining carbon clusters are small indicating that the C–C bond is conserved in these clusters. Dipole moments of even-numbered structures are negligible, whereas odd-numbered ones have μ values of 0.09−0.73 D.  相似文献   

3.
A novel quaternary scandium borocarbosilicide Sc3.67−xB41.4−yzC0.67+zSi0.33−w was found. Single crystallites were obtained as an intergrowth phase in the float-zoned single crystal of Sc0.83−xB10.0−yC0.17+ySi0.083−z that has a face-centered cubic crystal structure. Single crystal structure analysis revealed that the compound has a hexagonal structure with lattice constants a = b = 1.43055(8) nm and c = 2.37477(13) nm and space group (No. 187). The crystal composition calculated from the structure analysis for the crystal with x = 0.52, y = 1.42, z = 1.17, and w = 0.02 was ScB12.3C0.58Si0.10 and that agreed rather well with the composition of ScB11.5C0.61Si0.04 measured by EPMA. In the crystal structure that is a new structure type of boron-rich borides, there are 79 structurally independent atomic sites, 69 boron and/or carbon sites, two silicon sites and eight scandium sites. Boron and carbon form seven structurally independent B12 icosahedra, one B9 polyhedron, one B10 polyhedron, one irregularly shaped B16 polyhedron in which only 10.7 boron atoms are available because of partial occupancies and 10 bridging sites. All polyhedron units and bridging site atoms interconnect each other forming a three-dimensional boron framework structure. Sc atoms reside in the open spaces in the boron framework structure.  相似文献   

4.
A novel ternary boron-rich scandium borocarbide Sc4.5−xB57−y+zC3.5−z (x=0.27, y=1.1, z=0.2) was found. Single crystals were obtained by the floating zone method by adding a small amount of Si. Single-crystal structure analysis revealed that the compound has an orthorhombic structure with lattice constants of a=1.73040(6), b=1.60738(6) and c=1.44829(6) nm and space group Pbam (No. 55). The crystal composition ScB13.3C0.78Si0.008 calculated from the structure analysis agreed with the measured composition of ScB12.9C0.72Si0.004. The orthorhombic crystal structure is a new structure type of boron-rich borides and there are six structurally independent B12 icosahedra I1—I6, one B8/B9 polyhedron and nine bridging sites all which interconnect each other to form a three-dimensional boron framework. The main structural feature of the boron framework structure can be understood as a layer structure where two kinds of boron icosahedron network layer L1 and L2 stack each other along the c-axis. There are seven structurally independent Sc sites in the open spaces between the boron icosahedron network layers.  相似文献   

5.
Cluster abundance of Li n + (n≤19), Na n + (n≤25), Si n z+ (n≤8 forz=1, 3≤n≤7 forz=2), Ge n z+ (n≤11 forz=1, 3≤n≤9 forz=2,n=4 forz=3), Sn n z+ (n≤7 forz=1, 3≤n≤9 forz=2,n=4 forz=3) and Pb n z+ (n≤6 forz=1, 5≤n≤7 forz=2) ejected from a liquid metal ion source has been investigated by mass spectrometry. The abundance spectra of alkali metal clusters showed distinct maxima and steps atn=3, 7, 9, 13 and 19 for Li, and atn=3, 5, 11, 13 and 19 for Na. Mass spectra of Si, Ge and Sn clusters were very similar each other, showing intensity drops aftern=4 and 6 (and alson=10 for Ge) for singly charged clusters. The magic numbers observed are discussed in terms of stability of charged clusters.  相似文献   

6.
The ground-state geometrical and electronic properties of neutral and charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) clusters are systematically investigated by density-functional calculations. The growth evolution trends of neutral and charged Fe n C2, Co n C2, Ni n C2 and Cu n C2 (n = 1–5) clusters are all from lower to higher dimensionality, while it is special for Cu n C 2 ± (n = 1–5) clusters which favor planer growth model. The space directional distributions of Co and Ni indicate stronger magnetic anisotropy than that in Cu atoms. Compare with experimental data (photoelectron spectroscopy), our results are in good agreement. The interaction strengths between metal and carbon atoms in TM–C (TM = Fe, Co, Ni) clusters are comparable and are obviously larger than that in Cu–C clusters, and this interaction strengths also decrease through the sequence: cation > neutral > anion, which may be crucial in exploring the differences in the growth mechanisms of metal–carbon nano-materials.  相似文献   

7.
Ternary carbides AxTyCz (A=rare earth metals and actinoids; T=transition metals) with monoatomic species C4− as structural entities are classified according to the criteria (i) metal to carbon ratio, (ii) coordination number of the transition metal by carbon atoms, and (iii) the dimensionality of the anionic network [TyCz]n. Two groups are clearly distinguishable, depending on the metal to carbon ratio. Those where this ratio is equal to or smaller than 2 may be viewed as carbometalates, thus extending the sequence of complex anions from fluoro-, oxo-, and nitridometalates to carbometalates. The second group, metal-rich carbides with metal to carbon ratios equal to or larger than 4 is better viewed as typical intermetallics (“interstitial carbides”). The chemical bonding properties have been investigated by analyzing the Crystal Orbital Hamilton Population (COHP). The chemical bonding situation with respect to individual T-C bonds is similar in both classes. The main difference is the larger number of metal-metal bonds in the crystal structures of the metal-rich carbides.  相似文献   

8.
《Solid State Sciences》2012,14(10):1458-1461
Single phase (Tl1−yCy)Ba2Ca3Cu4O12−δ (Tl1−yCy-1234) (y = 0, 0.25, 0.5 and 0.75) superconductor samples have been prepared by solid state reaction method. The FTIR absorption measurements have confirmed the substitution of carbon at thallium site in the charge reservoir layer, (Tl1−yCy)Ba2O4−δ. The electron micrographs of these samples have shown that the carbon substitution has improved the grain morphology of Tl0.75C0.25-1234 sample. The y = 0.25 was found to be the optimum carbon concentration to achieve higher superconducting transition temperature Tc[0] and improved grain morphology. The superconducting transition temperature of Tl0.75C0.25-1234 sample has been increased to 100 K whereas a decrease in the superconducting transition temperature of Tl1−yCy-1234 (y = 0.5 and 0.75) samples was observed. However, the magnitude of diamagnetism has been decreased in all the carbon substituted samples.  相似文献   

9.
10.
《Solid State Sciences》2012,14(7):801-804
We investigated properties of representative zigzag and armchair gallium phosphide (GaP) nanotubes by performing density functional theory (DFT) calculations. To achieve our purpose, eight models of (n,0) zigzag GaP nanotubes with n = 3–10 and five models of (m,m) armchair GaP nanotubes m = 2–6 were considered. Each model was firstly optimized and quadrupole coupling constants (CQ) were subsequently calculated for gallium-69 atoms of the optimized structures. The results indicated that the optimized properties including dipole moments, energy gaps, binding energies, and bond lengths could be mainly dependent on the diameters of GaP nanotubes, which are directly determined by n or m indices. Moreover, comparing the values of CQ parameters indicated that the narrower GaP nanotubes could be considered as more reactive materials than the wider nanotubes, in which the reactivities are very important in determining the applications of nanotubes. And finally, the atoms at the sidewalls of nanotubes could be divided into atomic layers based on the similarities of properties for atoms of each layer, in which the properties of Ga atoms at the edges of nanotubes are significantly different from other layers only for wider nanotubes.  相似文献   

11.
Based on the calculated findings that the sizes of encaged clusters determine the structures and the stability of C80-based trimetallic nitride fullerenes (TNFs), more extensive density functional theory calculations were performed on M3N@C68, M3N@C78 and M3N@C80 (M=Sc, Y and La). The calculated results demonstrated that the structures and stability undergo a transition with the increasing of the sizes of the cages and clusters. Sc3N is planar inside the three considered cages, Y3N is slightly pyramidal inside C68-6140 and C78-5 and planar inside Ih C80-7, however, La3N is pyramidal inside all the three cages. Those cages with pyramidal clusters inside deformed considerably, compared with their parent cages. In these cases, the bonding of metallic atoms toward the cages does not play an important role, and the encaged cluster tends to be located inside the cages with the largest M-M and M-C distances so that the strain energy can be released mostly. These calculations revealed the size effect of fullerene cages and encaged clusters, and can explain the position priority of M3N inside fullerene cages and the differences in yield of M3N@C2n . Supported by the Southwest University, China (Grant No. SWNUB2005002)  相似文献   

12.
Sodium-bearing type A-B carbonate chlorapatites {CCLAP; Ca10−(y+z)Nayz[(PO4)6−(y+2z)(CO3)y+2z][Cl2−2x(CO3)x], with xy≈4z≈0.4} have been synthesized from carbonate-rich melts at 1350-1000 °C and 1.0 GPa, and investigated by single-crystal X-ray structure and FTIR spectroscopy. Typical crystal and compositional data are: a=9.5321(4) Å, c=6.8448(3) Å, space group P63/m, R=0.027, Rw=0.025, x=0.37(3), y=0.57(2). Crystal-chemical features and FTIR spectra are similar to Na-bearing type A-B carbonate hydroxyapatites (CHAP) and fluorapatites (CFAP) reported recently. The molar amounts of Na and channel (type A) carbonate maintain a near 1:1 ratio in all three composition series, confirming that the Na cation and A and B carbonate ion substituents exist as a defect cluster within the apatite matrix, to facilitate charge compensation and spatial accommodation. Uptake of carbonate is significantly lower in CCLAP than in CHAP for similar conditions of crystal synthesis.  相似文献   

13.
The structures, stability patterns of C26H n (n = 2) formed from the initial D 3h C26 fullerene were investigated by use of second-order-Moller–Plesset perturbation theory. The study of the stability patterns of hydrogenation reaction on C26 cage revealed that type (β) carbons were the active site and the analyses of π-orbital axis vector indicated that the reactivity of C26 was the result of the high strain and the hydrogenation reaction on C26 cage was highly exothermic. The calculated 13C NMR spectra of C26H n (n = 2) predicted that the two sp 3 hybridization carbons in C26H n (n = 2) obviously moved to high field compare with that in D 3h C26. Hence, the C26H2 should be obtained and detected experimentally. Similarly, the structures and reaction energies of C26H n (n = 4, 6, 8) were further studied at HF/6-31G*, B3LPY/6-31G* and MP2/6-31G* level. The results suggested the hydrogenation products of C26, C26H n (n = 4, 6, 8), were more stable than the C26 cage.  相似文献   

14.
Reaction of decamethylmetallocene cations [Cp∗2M]+ (M = Sc, Ti, V) with acetone and benzophenone resulted in the formation of the corresponding acetone adducts [Cp∗2M(OCMe2)n]+ (M = Sc, n = 2; M = Ti, n = 1; M = V, n = 1) and benzophenone adducts [Cp∗2M(OCPh)]+. The stoichiometry of these adducts is determined by both the electronic configuration of the metal center as well as steric pressure imparted by the large Cp∗-ligands. In addition, the M-O-C angle is controlled by the number of free valence orbitals of the Cp∗2M unit.  相似文献   

15.
《Solid State Sciences》2012,14(5):583-586
First-principles calculations have been carried out to investigate the structural, mechanic and electronic of transition metal hydrides MH2 (M = Ti, Zr, Hf, Sc, Y, La, V and Cr). It is found that TiH2 is mechanically unstable because of a negative C44 = −21.31 GPa and C11C12 < 0, the same behavior can be found in MH2 (M = Zr, Hf, and Y) compounds. Also there is a strong interaction between M (Ti, Zr, Hf, Sc, Y, La, V and Cr) and H. On the other hand, the H–H bond orders are always negative or nil reason of brittleness.  相似文献   

16.
The geometries, stabilities, electronic, and magnetic properties of hydrogen adsorption on Ru n clusters have been systematically investigated by using density functional theory with generalized gradient approximation. The result indicates the absorbed species does not lead to a rearrangement of the basic cluster. For n > 2, three different adsorption patterns are found for the Ru n H2 complexes: One H atom binds to the Ru top site, and another H binds to the bridge site for n = 3, 5, 6, 8; bridge site adsorption for n = 4; hollow site and top site adsorption for n = 7. The adsorption energies display oscillation and reach the peak at n = 2, 4, 7, implying their high chemical reactivity. The small electron transferred number between H atoms and Ru n clusters indicates that the interaction between H atoms and Ru n clusters is small. When H2 is absorbed on the Ru n clusters, the chemical activity of corresponding clusters is dramatically increased. The absorbed H2 can lead to an oscillatory behavior of the magnetic moments, and this behavior is rooted in the electronic structure of the preceding cluster and the changes in the magnetic moment are indicative of the relative ordering of the majority and minority LUMO’s. The second order difference indicates 5 is magic number in Ru n H2 and Ru n clusters.  相似文献   

17.
The (CH3OH) n (n = 2–8) clusters formed via hydrogen bond (H-bonds) interactions have been studied systemically by density functional theory (DFT). The relevant geometries, energies, and IR characteristics of the intermolecular OH···O H-bonds have been investigated. The quantum theory of atoms in molecule (QTAIM) and natural bond orbital (NBO) analysis have also been applied to understand the nature of the hydrogen bonding interactions in clusters. The results show that both the strength of H-bonds and the deformation are important factors for the stability of (CH3OH) n clusters. The weakest H-bond was found in the dimer. The strengths of H-bonds in clusters increase from n = 2 to 8, moreover, the strengths of H-bonds in (CH3OH) n (n = 4–8) clusters are remarkably stronger than those in (CH3OH) n (n = 2, 3) clusters. The small differences of the strengths of H-bonds among (CH3OH) n (n = 6–8) clusters indicate that a partial covalent character is attributed to the H-bonds in these clusters. The linear relationships between the electron density of BCP (ρb) and the H···O bond length of H-bonds as well as the second-perturbation energies E(2) have also been investigated and used to study the nature of H-bonds, respectively.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号