首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Er3+ -Yb3+ codoped in Li2O content tungsten -tellurite (TWL) transparent glasses are synthesized and measured the absorption, Raman and upconversion luminescence (UPL) spectra. At room temperature intense green emission peak at 560 nm ( 4S3/24I15/2) and red emission peak at 670 nm ( 4F9/24I15/2) of Er3+ observed even at minimum 86 mW pumping power of infrared 980 nm excitation. For structure of the TWL glass, Raman spectrum result revealed that an important role of WO3 in the formation of glass network linkage with Li2O. Under this influence estimated lifetime of the 4I11/2 of Er3+ was 1.89 μs and due to lower phonon energy of the glass produce strong upconversion signal. The effect of Er2O3 concentration on emission intensity result indicated that green emission intensity initially increase in compare to red emission. Under the 980 nm pump power variation measured the relatively increases the red emission to the green emission intensity and analyze the possible upconversion mechanism and process.  相似文献   

2.
Yb3+-Tm3+ co-doped up-conversion powder phosphors using Zn(AlxGa1-x)2O4 (ZAGO) as the host materials were synthesized via solid-state reaction successfully. In addition, the morphology, structural characterization and up-conversion luminescent properties were all investigated by scanning electron microscope (SEM), x-ray diffraction (XRD) and fluorescence spectrophotometer (F-7000), respectively. Under the excitation of a 980 nm laser, all as-prepared powders can carry out blue emission at about 477 nm (corresponding to 1G4 → 3H6 transition of Tm3+ ions), and red emission at about 691 nm (attributed to 3F3 → 3H6 transition of Tm3+ ions). Also, the influence of doping Al3+ ions were investigated. In brief, the doping of Al3+ ions has no effect on the position of emission peak. Howbeit the up-conversion efficiency and intensity of ZAGO:Yb,Tm phosphors are stronger than ZGO:Yb,Tm and ZAO:Yb,Tm phosphors, while the crystallinity is the opposite. More particularly, all as-prepared powder phosphors emit strong luminescence, which is observable by the naked eye, demonstrating the potential applications in luminous paint, luminescent dye, etc.  相似文献   

3.
4.
The high efficient antireflective down-conversion Y2O3:Bi, Yb films have been prepared successfully on Si(100) substrates by pulsed laser deposition (PLD) method, Upon excitation of ultraviolet photon varying from 300 to 400 nm, near-infrared emission of Yb3+ was observed for the film, can be efficiently absorbed by silicon (Si) solar cell. Most interestingly, there is a very low average reflectivity 1.46% for the incident light from 300 to 1100 nm. To the best of our knowledge, this is the lowest reflectance for the down-conversion thin films prepared by cost efficient method. The surface topography of the high efficient antireflective films can be controllably tuned through the substrate template regulation by optimizing process parameters. Besides, the results showed that there is a close relationship between luminescent property and morphology of the film. With the change of the surface morphology, the intensity of Bi3+ and Yb3+ emission peaks increase first and then decrease. The obtained results demonstrate that this film can enhance the Si solar cell efficiency through light trapping and spectrum shifting.  相似文献   

5.
The up-converting ZrO2:Yb3+,Er3+ nanomaterials were prepared with the combustion and sol–gel methods. FT-IR spectroscopy was used for analyzing the impurities. The crystal structures were characterized with X-ray powder diffraction and the mean crystallite sizes were estimated with the Scherrer formula. Up-conversion luminescence measurements were made at room temperature with IR-laser excitation at 977 nm. The IR spectra revealed the conventional and OH impurities for the combustion synthesis products. The structure of the ZrO2:Yb3+, Er3+ nanomaterials was cubic except for the minor monoclinic and tetragonal impurities obtained with the sol–gel method. The materials showed red (650–700 nm) and green (520–560 nm) up-conversion luminescence due to the 4F9/24I15/2 and (2H11/2, 4S3/2)→4I15/2 transitions of Er3+, respectively. The products obtained with the combustion synthesis exhibited the most intense luminescence intensity and showed considerable afterglow.  相似文献   

6.
Tricalcium aluminate doped with Eu3+ was prepared at furnace temperatures as low as 500°C by using the convenient combustion route and examined using powder X-ray diffraction, scanning electron microscope and photoluminescence techniques. A room-temperature photoluminescence study showed that the phosphors can be efficiently excited by UV/Visible region, emitting a red light with a peak wavelength of 616 nm corresponding to the 5D07F2 transition of Eu3+ ions. The phosphor exhibits three thermoluminescence (TL) peaks at 195°C, 325°C and 390°C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the TL process. Room-temperature ESR spectrum of irradiated phosphor appears to be a superposition of three distinct centres. One of the centres (centre I) with principal g-value 2.0130 is identified as O ion while centre II with an axially symmetric principal values g =2.0030 and g =2.0072 is assigned to an F+ centre (singly ionized oxygen vacancy). O ion (hole centre) correlates with the TL peak at 195°C and the F+ centre (electron centre), which acts as a recombination centre, is also correlated to the 195°C TL peak. F+ centre further appears to be related to the high temperature peak at 390°C. Centre III is also assigned to an F+ centre and seems to be the recombination centre for the TL peak at 325°C.  相似文献   

7.
8.
In this paper we study the possibility of using the synthesized nanopowder samples of Gd2Zr2O7:Eu3+ for temperature measurements by analyzing the temperature effects on its photoluminescence. The nanopowder was prepared by solution combustion synthesis method. The photoluminescence spectra used for analysis of Gd2Zr2O7:Eu3+ nano phosphor optical emission temperature dependence were acquired using continuous laser diode excitation at 405 nm. The temperature dependencies of line emission intensities of transitions from 5D0 and 5D1 energy levels to the ground state were analyzed. Based on this analysis we use the two lines intensity ratio method for temperature sensing. Our results show that the synthesized material can be efficiently used as thermographic phosphor up to 650 K.  相似文献   

9.
The Dy3+ and Eu3+ activated K3Al2 (PO4)3 phosphors were prepared by a combustion synthesis. From a powder X-ray diffraction (XRD) analysis the formation of K3Al2 (PO4)3 was confirmed. In the photoluminescence emission spectra, the K3Al2(PO4)3:Dy3+ phosphor emits two distinctive colors: blue and yellow whereas K3Al2(PO4)3:Eu3+ emits red color. Thus the combination of colors gives BYR (blue–yellow–red) emissions can produce white light. These phosphors exhibit a strong absorption between 340 and 400 nm which suggest that present phosphor is a promising candidate for producing white light-emitting diodes (LED).  相似文献   

10.
Experimental data for cw lasing from a compact solid-state laser based on a neodymium-doped calcium-gallium-germanium-garnet crystal (Ca3Ga2Ge3O12:Nd3+) at a wavelength of 1.06 μm in the case of intense diode pumping are reported. The laser output reaches 0.7 W for a cavity 15 mm long and an active element 1 mm thick. It is shown that the output power is limited by a thermal lens placed in the active element.  相似文献   

11.
The effect of compensator on optical properties of Ca2Al2SiO7:Eu3+ is systematically investigated by the X-ray powder diffraction, photo-luminescence (PL) properties and lifetime. It is obviously observed that the PL intensity of Eu3+ under 394 nm excitation increases in the order of Ca1.86Eu0.14Al2SiO7 (CAS), Ca1.72Na0.14Eu0.14Al2SiO7 (CASNa) and Ca1.86Eu0.14Al2.14Si0.86O7 (CASAl), the intensity of Eu3+ are 100%, 134%, 184%, and the lifetime of Eu3+ are 0.75 ms, 1.28 ms and 1.39 ms, respectively. A charge compensation model is proposed to explain the changes in the emission intensity and lifetime of Eu3+ in Ca2Al2SiO7 with different compensation methods. PACS 78.55.-m; 61.72.Ji; 61.43.Gt; 42.70.-a; 74.62.Dh  相似文献   

12.
The kinetics of luminescence of Eu3+ ions in Lu2O3:Eu nanospheres with diameters of 100–270 nm and a small standard deviation of the size distribution <15% has been studied. A sharp decrease in the decay time of luminescence of Eu3+ ions in the red range with an increase in the diameter of nanospheres has been attributed to the appearance of a photon mode accelerating spontaneous luminescence, which is confirmed by the calculation of ranges of existence of whispering-gallery modes in studied nanospheres.  相似文献   

13.
The Er3+-Yb3+ codoped Al2O3 nanoparticles with an average particle size of about 50 nm have been synthesized by an arc discharge synthesis method. The green and red up-conversion emissions centered at about 526, 547 and 677 nm, corresponding respectively to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978-nm semiconductor laser diode excitation. The Annealing has evident effect on the up-conversion emissions of the samples: The red up-conversion emission is noticeable before annealing; however, the green up-conversion emission becomes predominant after annealing. The mixture of (Er,Yb)3Al5O12 and α-(Al,Er,Yb)2O3 phases is more favorable for green up-conversion emissions due to an enhancement of the ESA (I) of 4I11/2+a photon→4F7/2 and ET (III) of 2F5/2(Yb3+)+4I11/2(Er3+)→2F7/2(Yb3+)+4F7/2(Er3+) processes. The two-photon absorption up-conversion process is involved in the green and red up-conversion emissions. The results have proved that arc discharge synthesis is a new promising preparation technology for optical materials. Supported by National Natural Science Foundation of China (Grant No. 10804015), the Scientific Research Foundation for Doctor of Liaoning Province (Grant No. 20071095), and the Educational Committee Foundation of Liaoning Province (Grant No. 2008123)  相似文献   

14.
The mechanism of the upconversion processes in Y6O5F8: 2%Er3+/X%Yb3+ (X = 3, 10, 20) microtubes has been explored. The luminescent properties of the as prepared sample is investigated by utilizing up- /downconversion, decay and time resolve spectra. The results indicate that the red and green emission are clearly competitive depending on the Yb3+ concentration. High Yb3+ concentration induces the enhancement of the energy-back-transfer (EBT), process, which leads to the quenching of green emission and enhances the red emission. So it is possible to utilize the temporal evolutions of emission bands to deeply understand the color change UC mechanisms.  相似文献   

15.
Electron paramagnetic resonance (EPR) spectra of doped paramagnetic crystals LiLuF4:U3+ and LiYF4:Yb3+ have been investigated at a frequency of about 9.42 GHz in the temperature range of 10–20 K. The U3+ ion spectrum is characterized by g-factors g = 1.228 and g = 2.516, and contains the hyperfine structure due to the 235U isotope with nuclear spin I = 7/2 and natural abundance of 0.71%. The observed hyperfine interaction constants are A = 81 G and A = 83.8 G. Moreover, the spectrum reveals the well-resolved superhyperfine structure (SHFS) due to two groups of four fluorine ions forming the nearest surrounding of the U3+ ion. This SHFS contains up to nine components with the spacing between components being about 12.7 G. The SHFS is observed also in the EPR spectrum of the LiYF4:Yb3+ crystal; up to 17 components with spacing of about 3.7 G may be traced. Some parameters of the effective Hamiltonian of the SHF interaction are estimated, the contribution of covalent bonding of f-electrons with ligands into these parameters is discussed. Authors' address: Igor N. Kurkin, Kazan State University, Kremlevskaya ulitsa 18, Kazan 420008, Russian Federation  相似文献   

16.
We present the results of studying the luminescence properties of transparent ceramics Y3Al5O12:Yb obtained by the vacuum sintering and nanocrystalline technology. In the course of research, we measured the luminescence and luminescence excitation spectra, as well as the temperature and kinetic behavior of luminescence. Our results are analyzed in comparison with the characteristics of corresponding single crystals. We revealed that processes of generation and relaxation of electronic excitations that occur in ceramics, in particular, in the charge transfer state, are similar to processes occurring in crystals. The behavior of two charge-transfer luminescence bands at 340 and 490 nm is studied. In the range 300–600 nm, we revealed a broad emission band of radiation of other type, which is also observed in spectra of undoped ceramics. This broad band is attributed to F+ centers. Emission and excitation spectra of charge transfer luminescence at a maximum of the temperature dependence of 100 K are measured for the first time. We found that, upon excitation in the charge transfer band, luminescence in ceramics is more intense than in single crystals with similar concentrations of Yb and has a higher quenching temperature.  相似文献   

17.
We report spectroscopic and laser properties for propagation directions outside the principal axes of Yb3+-doped low symmetry laser crystals with a special devotion to the wavelength dependence anisotropy. We illustrate our report with experimental data in the 900–1075 nm range of wavelengths from the Yb3+:La2CaB10O19 monoclinic crystal excited under laser diode pumping at 975 nm. This study, which makes easier the realization of Yb3+ lasers with an efficient free-running operation at the wavelength having the highest emission intensity or at a specified wavelength, or emitting two frequencies with a specified frequency difference, is of promising interest for applications.  相似文献   

18.
In this paper, a facile co-precipitation process for preparing mono-dispersed core–shell structure nanoparticles is reported. The 110 nm SiO2 cores coated with an yttrium aluminum garnet (Y3Al5O12) layer doped with Er3+ were synthesized and the influence of the concentration ratio of [urea]/[metal ions] on the final product was investigated. The structure and morphology of samples were characterized by the X-ray powder diffraction, Fourier transform IR spectroscopy and transmission electron microscopy, respectively. The results indicate that a layer of well-crystallized garnet Y3Al5O12:Er3+ were successfully coated on the silica particles with the thickness of 20 nm. The near infrared and upconversion luminescent spectra of the SiO2@Y3Al5O12:Er3+ powders further confirm that a Y3Al5O12:Er3+ coating layer has formed on the surface of silica spherical particles.  相似文献   

19.
Undoped and different concentration Nd3+ doped SrNb2O6 powders with columbite structure were synthesized by molten salt process using a mixture of strontium nitrate and niobium (V) oxide and NaCl-KCl salt mixture as a flux under relatively low calcining temperature. X-ray diffraction analysis results indicated that SrNb2O6 phases found to be orthorhombic columbite single phase for undoped, 0.5 and 3 mol% Nd3+ doping concentrations. Phase composition of the powders was examined by SEM-EDS analyses. Radioluminescence properties of Nd3+ doped samples from UV to near-IR spectral region were studied. The emissions increased with the doping concentration of up to 3 mol%, and then decreased due to concentration quenching effect. There is a sharp emission peak around 880 nm associated with 4F5/2 → 4I9/2 transition in the Nd3+ ion between 300 and 1100 nm. The broad emission band intensity was observed from 400 to 650 nm where the peak intensities increased by increasing Nd3+ doping concentration. All the measurements were taken under the room temperature.  相似文献   

20.
Possibilities of using lithium niobate crystals, doped with ytterbium (LN:Yb3+) as materials for optical temperature sensor (OTS), are discussed. We consider both the radiative and absorptive characteristics of the crystals, assuming that their temperature dependences are caused by the Boltzmann factor of the initial population of Stark sublevels of the ion. It is shown that the crystals can be used as materials for OTS in the temperature range 150–400 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号