首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract  Photochemical reaction of methanol solution containing 1,4-diferrocenyl- or 1,4-diphenyl-1,3-butadiynes and iron pentacarbonyl into which CO was constantly bubbled, yielded diiron hexacarbonyl complexes of cumulene ligand systems, [η1: η3-{RCHC2CR(COOMe)}Fe2(CO)6] (1; E, R = Fc, 2; Z, R = Fc, 5; E, R = Ph, 6; Z, R = Ph) and [η3: η3-{RCHC2CR(COOMe)}Fe2(CO)6] (3; E, R = Fc, 7; E, R = Ph), formed by 1,4-addition of –COOMe and –H to the butadiynes. Additionally, diferrole, [Fe(CO)4{C(O)CC(Fc)C(O)}2],4 was obtained in minor quantity. Compounds 1, 2, 5 and 6 contain vinylallyl carbon framework which is stabilized by MeOC=O → Fe bond along with η1: η3 coordinated Fe2(CO)6 unit. Compounds 3 and 7 contain butatriene units which are stabilized by η3: η3 coordinated Fe2(CO)6 unit. Characterization of the new compounds was carried out by IR and 1H and 13C NMR spectroscopy and by mass spectrometry. Molecular structures of 27 were established by single crystal X-ray diffraction methods. Graphical Abstract  Diiron hexacarbonyl complexes of cumulene ligand systems, [η1: η3 {RCHC2CR(COOMe)}] (1; E, R = Fc, 2; Z, R = Fc, 5; E, R = Ph, 6; Z, R = Ph) and [η3: η3-{RCHC2CR(COOMe)}] (3; E, R = Fc, 7; E, R = Ph) were obtained from photochemical reactions between Fe(CO)5, CO and methanol. Yield of the minor product, the diferrole, 4, was improved when the photoreaction was carried out in hexane in place of methanol   相似文献   

2.
[TpPh,MeNi(Cl)PzPh,MeH] (1) has been synthesized by the reaction of hydrotris(3-phenyl-5-methyl-pyrazol-1-yl) borate [TpPh,Me], NiCl2 · 6H2O and 3-phenyl-5-methyl-pyrazole [PzPh,MeH]. The reaction of 1 with variously substituted sodium pX–benzoates resulted in the formation of complexes of the type [TpPh,MeNi(p–X–OBz)PzPh,MeH] (X = H for 2, F for 3, Cl for 4, NO2 for 5, Me for 6, OMe for 7, OH for 8, CHO for 9 and CN for 10). Single crystal X-ray studies suggest that all these complexes have a five-coordinate metal center and the benzoate groups are monodentate in a square pyramidal geometry. The X-ray studies also reveal that the uncoordinated oxygen atom of the benzoate forms intramolecular hydrogen-bonds with the NH group of the coordinated pyrazole. The substituents present on the benzoate ring are involved in different types of intermolecular interactions and the complexes exhibit different crystal packing. Complexes 210 were tested for superoxide dismutase activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Two novel bimetallic complexes, [Cr(CO)3(η 6-C6H5)–C≡C–C6H4–Fc] (Fc = C5H5FeC5H4] (1) and [Cr(CO)3(η 6-C6H5)–C ≡ C–Fc–C(CH3)2–Fc] (3), were synthesized by the Sonogashira coupling reaction. By using of (1) and (3) as ligands to react with Co2(CO)8, two others novel polymetallic complexes, [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}–C6H4–Fc] (2) and [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}Fc–C(CH3)2–Fc] (4) were obtained. Four carbonyl complexes were characterized by elemental analysis, FT-IR, NMR and MS. The molecular structures of complexes (1), (2) and (4) were determined by single crystal X-ray diffraction. The interactions among the ferrocenyl, Cr(CO)3 and Co2(CO)6-η 2-μ 2-C≡C– units were investigated by cyclic voltammetry.  相似文献   

4.
Three new diruthenium complexes, namely (η 5-C5H4C(CH2)4CH=CHCH3)2Ru2(CO)2(μ-CO)2 (1), (η 5-C5H4CEt2CH=CHCH3)2Ru2(CO)2(μ-CO)2 (2), and (η 5-C5Me4CH=CHCH3)2Ru2(CO)2(μ-CO)2 (3), were synthesized and characterized by elemental analysis, IR and 1H-NMR spectra. The crystal structures of complexes 1 and 2 were determined by X-ray single-crystal diffraction and showed that the allyl reagents used in their synthesis underwent isomerization to give the corresponding methyl–vinyl complexes. The X-ray crystal structures of complexes 1 and 2 confirm the presence of both bridging and terminal CO groups. A possible mechanism for the observed alkene isomerizations is discussed.  相似文献   

5.
The cationic complexes, [TpRNi(bpym)]+ {TpR = tris(3,5-diphenylpyrazolyl)borate, R = Ph2 1; tris(3-phenyl-5-methylpyrazolyl)borate, R = Ph,Me 2} were synthesized by reacting [TpRNiBr] (R = Ph2; Ph,Me) with bipyrimidine followed by subsequent addition of KPF6 in CH2Cl2. The green solids have been characterized by IR, UV–Vis and 1H NMR spectroscopy. Crystallographic studies of [TpPh,MeNi(bpym)]PF6 reveal a five-coordinate square pyramidal nickel centre with a κ3-coordinated TpPh,Me ligand and a chelating bipyrimidine ligand. Cyclic voltammetric studies show irreversible reduction with the degree of reversibility dependent on the type of TpR ligand.  相似文献   

6.
Abstract  Reaction of [(η5-C5Me5Mo)2B5H9], 1 with 5-fold excess of n-BuLi at −70 °C followed by excess of RI (R = n-Bu or Ph) at room temperature yielded B-R inserted metallaboranes [(η5-C5Me5Mo)2B5H8R] (2: R = n-Bu, 5: R = Ph), [(η5-C5Me5Mo)2B5H7R2] (3, 4: R = n-Bu; 6, 7: R = Ph). Isolated yields of mono-alkyl/arylated species are better than di-alkyl/arylated ones. All the new cluster compounds have been characterized by IR, 1H, 11B, 13C NMR and mass spectroscopy as simple substitution derivatives of [(η5-C5Me5Mo)2B5H9] and the structural types of one of these species, 2 was established by X-ray crystallographic analysis. Graphical Abstract  Reaction of [(η5-C5Me5Mo)2B5H9], with 5-fold excess of n-BuLi at −70 °C followed by excess of RI (R = n-Bu or Ph) at room temperature yielded B-R inserted metallaboranes [(η5-C5Me5Mo)2B5H9-nRn] (When R = n-Bu, n = 2, 1; R = Ph, n = 2, 1).   相似文献   

7.
Thermal treatment of the substituted tetramethylcyclopentadienes [C5Me4HR] [R?=?n-propyl (1), i-propyl (2), cyclopentyl (3), cyclohexyl (4), and 4-NMe2Ph (5)] with Fe(CO)5 gave five new substituted tetramethylcyclopentadienyl dinuclear iron carbonyl complexes, [η5-C5Me4CH2CH2CH3]2Fe2(CO)4 (6), [η5-C5Me4CH(CH3)2]2Fe2(CO)4 (7), [η5-C5Me4CH(CH2)4]2Fe2(CO)4 (8), [η5-C5Me4CH(CH2)5]2Fe2(CO)4 (9), and [(η5-C5Me4)(4-NMe2Ph)]2Fe2(CO)4 (10). The new complexes were characterized by elemental analysis, IR, and 1H NMR spectra. The molecular structures of 6, 8, 9, and 10 were determined by X-ray single crystal diffraction.  相似文献   

8.
The main regularities of the reactions of 1-haloalkynes RC≡CX with carbonylmetallate anions [(η5-C5R′5)(CO)3M] (R′ = H (1–3),, M=Cr (1), M=Mo (2), or M=W (3); R′ =Me (4–6), M=Cr (4), M=Mo (5), or M=W (6) were revealed. It was established that the first stage of the reactions of anions1–6 with bromo- or iodoalkynes RC≡CX (X=Br or I) involved the transfer of the halogen atom from the sp-hybridized carbon atom to the transition metal atom to form carbonyl halides [(η5-C5R′5)(CO)3MX. To the contrary, the reactions of anions1–6 with chloroalkynes RC≡CCl proceeded selectively as a nucleophilic substitution at the unsaturated carbon atom, the reaction rate being governed by the nucleophilicity of the carbonylmetallate anions and the electron-withdrawing ability of the R group. These reaction paths are consistent with the structures of the lowest unoccupied molecular orbitals (LUMO) in the PhC≡CX molecules (X=Cl, Br, or I) calculated by the MNDO/PM3 method. In the case of the reactions of 1-chloroheptyne-1 C1C≡CC5H11 n, anions1–3 appeared to be insufficiently nucleophilic, but these reactions can be performed as cross-coupling of the carbonylmetallate anions with chloroalkynes catalyzed by palladium complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1176–1184, June, 1999.  相似文献   

9.

Abstract  

Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials.  相似文献   

10.
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR).  相似文献   

11.
Irradiation of the cation [η-C5Me4H)Fe(η-C6H6)]++ (1) and ButNC with visible light in acetonitrile results in the displacement of the benzene ligand, giving [(η-C5Me4H)Fe(ButNC)3]+ (2). Reactions of complex 1 with P(OR)3 and dppe in MeCN yield the complexes [(η-C5Me4H)-Fe(MeCN)P(OR)3 2]+ (R = Me (3) and Et (4)) and [(η-C5Me4H)Fe(MeCN)(dppe)]+ (5) containing two Fe—P bonds. The same reactions in CH2Cl2 give the tris(phosphite) complexes [(η-C5Me4H)FeP(OR)3 3]+ (6, 7). A photochemical reaction of complex 1 with pentaphos-phaferrocene Cp*Fe(η-cyclo-P5) yields the triple-decker cation [(η-C5Me4H)Fe(μ-η:η-cyclo-P5)FeCp*]+ (8) with a bridging pentaphospholyl ligand. Structures [2]PF6 and [3]PF6 were identified by X-ray diffraction.  相似文献   

12.
Abstract  Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials. Graphical Abstract  
Shinya HayamiEmail:
  相似文献   

13.
Some binuclear lanthanide complexes with the general formula [Ln(2,3-DClBA)3bipy]2 (Ln = Sm(1), Eu(2), Tb(3), Dy(4), and Ho(5); 2,3-DClBA = 2,3-dichlorobenzoate; bipy = 2,2′-bipyridine) were synthesized and characterized by elemental analysis, molar conductance, infrared, ultraviolet, luminescent spectroscopy, thermogravimetry, and different thermogravimetry (TG–DTG) techniques. The single crystals of the complexes have been obtained except the complex 2 and their structures have been determined by single-crystal X-ray diffraction. The four complexes are isostructural and the rare earth ions are all nine coordinated. The two rare earth ions in each complex are linked by two bridging bidentate and two chelating-bridging tridentate carboxylate groups. Under ultraviolet light excitation, the europium and terbium complexes exhibited characteristic red fluorescence of Eu3+ ion and green fluorescence of Tb3+ ion at room temperature. The non-isothermal kinetics was investigated by using the integral isoconversional non-linear (NL-INT) and the Popescu methods. The mechanism functions of the first decomposition step of the complexes 35 were determined. Meanwhile, the thermodynamic parameters (ΔG , ΔH , and ΔS ) at DTG peak temperatures were also calculated.  相似文献   

14.
30-Electron triple-decker complexes [(η-C5H5)Fe(μ-η:η-C4Me4P)Fe(η-C5Me5)]PF6 and [(η-C4Me4)Co(μ-η:η-C4Me4P)Fe(η-C5Me5)]PF6 with a central tetramethylphospholyl ligand were synthesized by stacking reactions of cationic fragments [(η-C5H5)Fe]+ and [(η-C4Me4)Co]+ with nonamethylphosphaferrocene (η-C4Me4P)Fe(η-C5Me5). Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1647–1649, September, 2000.  相似文献   

15.
The complex (η4-C4Me4)Co(CO)2I (I) reacted with excess SnCl2 in boiling THF to give, through replacement of the iodide ligand by the fragment SnCl3, the mononuclear complex (η4-C4Me4)Co(CO)2SnCl3 (II) containing the Co-Sn bond (2.459(1) ?). In a reaction of complex I with phenyltellurenyl halides PhTeI and PhTeBr, an analogous insertion into the cobalt-iodine bond yielded (ηC4Me4)Co(CO)2(TeI2Ph) (III) and (η4-C4Me4)Co(CO)2(TeBrIPh) (IV), respectively. This type of coordination of the aryltellurenyl halide fragment to the transition metal atom was observed for the first time. X-ray diffraction analysis revealed a substantial shortening of the formally single Co-Sn and Co-Te bonds in complexes II–IV compared to the sum of the covalent radii of the corresponding atoms. Original Russian Text ? Yu.V. Torubaev, A.A. Pasynskii, A.R. Galustyan, p. Mathur, 2009, published in Koordinatsionnaya Khimiya, 2009, vol. 35, No. 1, pp. 3–7.  相似文献   

16.
The shortening of partly multiple M–Te (M = Mn, Fe, Co, Cr or W) bonds is observed for two classes of organometallic compounds: (1) formally electron-deficient species with additional donor–acceptor interaction between Te lone pairs and half-occupied d-orbitals of M; (2) formally electron-saturated species having additional dative interaction between M lone pairs and LUMO of Te. These compounds could be prepared by two main methods: (a) interaction of [CpMn(CO)2PhC(O)]Li+ with Te proceeds via formation of intermediate {[CpMn(CO)2]2Te}2− which is further transformed into binuclear complex [CpMn(CO)2]2Te(CH2Ph)2 or into trinuclear ditelluride cluster [CpMn(CO)2]3Te2 on one hand or to mixed-metal monotelluride clusters [CpMn(CO)2]2TeM(CO)5 on another hand. (b) treatment of Fe(CO)5, CpMn(CO)2(THF) or Me4C4Co(CO)2I with [PhTeI]4, PhTeI3 or PhTeI2HC = CPhI results in different PhTeI-containing complexes of Fe, Mn or Co. The molecular structures of all new compounds were studied by means of X-ray diffraction analyses and the mechanism of M–Te bond shortening is discussed. Proceeding of the international workshop on transition metal clusters, 3–5 July 2008, Université de Rennes 1, Campus de Beaulieu, Rennes, France.  相似文献   

17.
The catalytic properties of the zirconium complex with “constrained geometry” Me2SiCp*NBu1ZrX2 (Cp*=C5Me4, X=Cl (1a), Me (1b)) and bridged bis(cyclopentadienyl)zirconocene Me2SiCp2ZrX2 (X=Cl (2a), Me (2b)) during their activation with triisobutylaluminum/perfluorophenyl borates (TIBA/LB(C6F5)4, L=CPh3 (3), Me2HNPh (4)) in ethylene polymerization under a monomer pressure of 2–20 atm were studied by comparison. Both dichloride complexes exhibit moderate activity under the action of the combined TIBA/3 activating agent and give linear high-molecular-weight polyethylene (PE). The interaction of the dimethyl complexes with TIBA/3(4) afford active sites in which the growing polymeric chain is intensely transferred to the monomer, due to which low-molecular-weight PE is formed. The dichloride complexes affected by TIBA/4 also afford low-molecular-weight PE. Analysis of the structure of the polymeric products (1H NMR spectrometry, IR spectroscopy), molecular-weight parameters of the PE samples (gel permeation chromatography (GPC)), and kinetics of polymerization suggested that the active site contains AlBui 3 as a heteronuclear bridged cationic complex. The influence of various basic substrates (the products of chain transfer with the terminal vinyl groups, the dimethylaniline fragment of borate4 or other amine specially introduced into the reaction mixture) on the catalytic properties of the Zr−Al site was revealed. The polymerization rate and molecular-weight parameters of PE as functions of the reaction temperature, ethylene pressure, and modifying additives were studied. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1189–1198, July, 2000.  相似文献   

18.
The effect of the ion-pairing of Co(III) complexes with p-sulfonatothiacalix[4]arene (STCA) on Fe(II)–Co(III) electron transfer rate was evaluated from the analysis and comparison of kinetic data in double Co(III)–Fe(II) and triple Co(III)–Fe(II)—STCA systems at various concentration conditions. Complexes [Co(en)3]3+(1), [Co(en)2ox]+(2), [Co(dipy)3]3+ (3), [Co(His)2]+(4) and [Fe(CN)6]4− were chosen as Co(III) and Fe(II) compounds. The effect of STCA was found to correlate with the association mode. The outer-sphere association with STCA was found to exhibit the insignificant effect on Fe(II)–Co(III) electron transfer k et constants for complexes 3 and 4 with bulky and rigid chelate rings, while more sufficient inclusion of flexible ethylendiaminate rings of 1 and 2 into the cavity of STCA results in the unusual increase of k et.  相似文献   

19.
Reduction of the R2P-functionalized zirconocene dichlorides [C5Me4(CH2)2PR2] (C5Me5)ZrCl2 (R = Me (1) and Ph (2)) and [C5Me4(CH2)2PMe2][C5Me4(CH2)2PR2]ZrCl2 (R = Me (3) and Ph (4)) with amalgamated magnesium was studied. In the reduction of compounds 1 and 2, intramolecular C-H activation highly selectively afforded the fulvene hydride complexes Zr(H)(η5−C5Me5)[η52(C,P)−(CH2)C5Me3CH2CH2PR2] (R = Me (7), Ph (8)); in the case of compound 2, the aryl hydride Zr(H)(η5:C5Me5)[η51(C)−C5Me4CH2CH2PPh(o−C6H4)] (9) was also formed. The reduction of complexes 3 and 4 gave the ZrII derivatives Zr[η51(P)− C5Me4CH2CH2PMe2]2 (12) and Zr[η51(P)−C5Me4CH2CH2PMe2][η51(P)−C5Me4CH2 CH2PPh2] (14) stabilized by two phosphine groups. The second product in the reduction of compound 4 was the fulvene hydride complex Zr(H)(η5−C5Me4CH2CH2PPh2)[η52(C,P)−(CH2)C5Me3CH2CH2PMe2] (15). The reaction of compound 7 with an excess of MeI resulted selectively in replacement of the hydride ligand by iodide to give the complex ZrI(η5−C5Me5)[η52(C,P)−(CH2)C5Me3CH2CH2PMe2] (10). In contrast, in the reaction of compound 7 with Me2Si(H)Cl, the Zr-CH2 bond underwent cleavage to give the chloride hydride complex Zr(H)Cl(η5−C5Me5)[η51(P)−C5Me3(CH2SiMe2H)CH2CH2PMe2] (11). In the reaction of complex 12 with CO, a phosphine group was replaced by CO to form the complex Zr(CO)(η5−C5Me4CH2CH2PMe2)[η51(P)−C5Me4CH2CH2PMe2] (13). The results obtained were compared with analogous reduction reactions of MeO-, MeS-, and Me2N-functionalized zirconocene dichlorides. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 65–74, January, 2008.  相似文献   

20.
The behavior of binuclear “ladder” type complexes FpL, where Fp=Cp(CO)2Fe, L=p-MeC6H4Cr(CO)3 (4), CH2C6H5Cr(CO)3 (5), andp-FpC6H4Cr(CO)3 (6), under conditions of metallation was studied. Unlike compounds5 and6, the σ-bound ligand L in compound4 migrates from the iron atom to the cyclopentadienyl ring to give complexes Me(CO)2FeC5H4−C6H4(p-Me)Cr(CO)3. The electrochemical reduction potentials of the complexes4–6 and the rearrangement products were measured. The migration activity of L is determined by the ease of reductive cleavage of the Fe−L bond and the susceptibility of the system to undergo intramolecular electron transfer from the Cp ligand to the aromatic ring. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1832–1835, September, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号