首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a study of the magnetization reversal dynamics in ultrathin Au/Co/Au films with perpendicular magnetic anisotropy, for a Co thickness of 0.5, 0.7 and 1 nm. In these films, the magnetization reversal is dominated by domain nucleation for tCo=0.5, 0.7 nm and by domain wall propagation for tCo=1 nm. The prevalence of domain nucleation for the thickness range 0.5-0.7 nm is different from results reported in the literature, for the same system and for the same thickness range, where the magnetization reversal took place mainly by domain wall motion. We attribute this difference to the effect of roughness of the Au buffer layer on the morphology of the magnetic layer.  相似文献   

2.
Ferromagnetic nanoparticles can be used for data storage, spintronics, and other applications. Especially vortex states are often suggested to be used to store information. Due to the shape anisotropy dominating in nanoparticles, magnetization reversal processes can be expected to depend not only on the dimensions, but also on the orientation with respect to the external magnetic field. While several papers evaluate magnetization dynamics, including vortex precessions, in round nanodots, square nanodots are less often investigated. Here we report on different magnetization reversal processes found in micromagnetic simulations of square Fe nanodots with lateral dimensions between 100 nm and 500 nm and thicknesses between 10 nm and 50 nm. Choosing magnetic field orientations parallel to one of the square edges and under 45°, seven different reversal mechanisms were found, most of them including a single-vortex state, while in some cases two, three or more vortex-antivortex pairs were found. The ground state, i.e. the magnetic state at vanishing external magnetic field, was often a single-vortex state, making the nanodot with the respective dimensions suitable for data storage applications. The stability of this state, i.e. the field range over which it existed, depended strongly on the lateral dimensions and the dot thickness and was largest for small lateral dimensions and large thicknesses.  相似文献   

3.
Using micromagnetic simulations, we investigated the magnetic states and switching processes of Co nanorings with lateral dimensions of 200 nm. We propose a special geometry of nanorings that adopts different Reuleaux triangular shapes. Reuleaux's triangles (RT) combine both the equilateral triangle and circular geometries. We studied the magnetic spin configurations of individual nanorings by varying the thickness and geometry of the nanomagnets. Our results demonstrated that in most nanomagnets exhibiting a thickness of less than 4 nm, there exists an onion-type state, which precedes either a twisted, double twisted, or cardioid state, when studying the magnetization reversal process. The hysteresis loops and magnetic states found in these RTs are compared with circular nanorings.  相似文献   

4.
We have investigated the evolution in the magnetization reversal mechanism of lithographically defined Ni80Fe20 nanowire arrays with varied film thicknesses. The nanowire array of width 185 nm and spacing 35 nm were fabricated using deep ultraviolet lithography at 248 nm exposing wavelength. We observed a cross-over from coherent rotation to curling reversal mode when the thickness to width ratio 0.5. We have aided our understanding of the reversal process with theoretical modeling. A marked increase in the coercive field characterized the intermediate region between coherent rotation and magnetization curling.  相似文献   

5.
Magnetization reversal in ultra-thin Au/Co/Au films deposited on single crystal silicon (1 0 0) was investigated using Kerr microscopy. In the considered ultra-thin Co films, with a thickness between 0.7 and 1 nm, the coercivity and magnetic anisotropy decrease with decrease in cobalt layer thickness and the magnetization reversal dynamics is dominated by disordered domain wall motion. An analysis of the observed magnetization reversal dynamics is proposed, starting from the Fatuzzo-Labrune model. We show that the relaxation curves of these samples are well described by a function obtained by a technical transformation of Fatuzzo-Labrune model in the regime dominated by domain wall motion.  相似文献   

6.
We present results of micromagnetic simulations of the magnetization reversal in permalloy nanostripes with 5-10 nm thickness and 200-500 nm width under a longitudinal field of 0.4-16 kA m(-1). The data show four distinct field regions: the well-known regions of uniform and oscillating domain wall movement as well as a process with multiple vortices, and finally a new process including Bloch walls and the generation of vortex-antivortex pairs in the inner part of the stripe rather than at the edges. We investigate this process in detail and derive a criterion for the formation of Bloch walls.  相似文献   

7.
《Current Applied Physics》2020,20(4):477-483
A systematic study of the magnetization reversal behavior in the regular arrangement of L10-FePt based exchange-spring nanomagnets with different thicknesses of the Co soft magnetic layer is presented. The magnetic property of the hard magnet is compared to two tuned exchange-spring magnets: its systems of 20 nm L10-FePt/3 nm, and 7 nm Co. In particular, we focus on the switching field distribution. The exchange coupling showed narrower SFD, in spite of the decoupled part switches earlier. The magnetization switching mechanism of exchange-spring nanomagnets patterns has been revealed with a first-order reversal curves technique and the switching field distribution. Further, the microscopic results using magnetic force microscopy show that the spin rotation of the non-interacting part in the thicker soft layered exchange-spring magnet. The part influences the magnetization reversal process. According to the experimental results, exchange coupling strength can be tuned by the thickness of the soft magnetic layer.  相似文献   

8.
Krone  P.  Makarov  D.  Cattoni  A.  Faini  G.  Haghiri-Gosnet  A.-M.  Knittel  I.  Hartmann  U.  Schrefl  T.  Albrecht  M. 《Journal of nanoparticle research》2011,13(11):5587-5593
The magnetization reversal behavior of a dot array consisting of Co/Pt multilayers with perpendicular magnetic anisotropy was investigated. The size of the dots was varied from 200 nm down to 40 nm, while keeping the filling factor constant at about 0.16. The structural properties were determined by scanning electron microscopy, whereas the magnetic investigation was performed using SQUID and MFM techniques. It was observed that the dot size has a severe impact on the magnetization reversal mechanism where only the smallest dots with a size of 40 nm are found to be in a magnetic single-domain state. Moreover, the patterning process leads to a degradation of the multilayer, leading to a reduction of the switching field and an increase of the switching field distribution with decreasing dot size. In addition, micromagnetic simulations were performed to understand the magnetization reversal mechanism in more detail.  相似文献   

9.
We present a detailed study of the magnetization reversal in perpendicularly magnetized (Pt/Co)3 multilayers with different values of the platinum interlayer thickness tPt. To study the magnetization reversal in our samples we combined measurements of relaxation curves with the direct visualization of domain structures. Magnetization reversal was dominated by domain wall propagation for tPt=1 nm and by domain nucleation for tPt=0.2 nm, while a mixed process was observed for tPt=0.8 nm. We interpret our results within the framework of a model of thermally activated reversal where a distribution of activation energy barriers is taken into account. The reversal process was correlated with the energy barrier distribution.  相似文献   

10.
Structure and magnetization of CoZrNb amorphous films prepared by DC magnetron sputtering have been studied as a function of film thickness (t), from 35 to 840 nm. Using comprehensive characterization, we show that the CoZrNb amorphous films possess a single phase and no nanocrystalline can be detected. The magnetic measurements indicate that the magnetization reversal of CoZrNb films is strongly dependent on t. That is, the coercivity is abruptly reduced to be lower than 4 Oe with t increasing from 35 to 105 nm, and then gradually decreases to ∼0.2 Oe as t increases. This coercivity transition versus t is accompanied by the strong magnetization reversal when t is larger than 105 nm. The results reveal that CoZrNb amorphous films with comparatively large film thickness (>100 nm) are suitable for sensors and anti-faked materials.  相似文献   

11.
The magnetization reversal of electrodeposited CoNi/Cu multilayer nanowires patterned in an array using a hole template has been investigated. The reversal mode is found to depend on the CoNi layer thickness t(CoNi); with increasing t(CoNi) a transition occurs from coherent rotation to a combination of coherent and incoherent rotation at around t(CoNi)=51 nm. The reversal mode has been identified using the magnetic hysteresis loops measured at room temperature for CoNi/Cu nanowires placed at various angles between the directions of the nanowire axis and external fields using a vibrating sample magnetometer. The nanowire samples have a diameter of ∼250 nm and constant Cu layer thickness of 4.2 nm with various t(CoNi) ranging from 6.8 nm to 7.5 μm. With increasing t(CoNi), the magnetic easy axis moves from the direction perpendicular to nanowires to that parallel to the nanowires at around t(CoNi)=51 nm, indicating a change in the magnetization reversal mode. The reversal mode for the nanowires with thin disk-shaped CoNi layers (t(CoNi)=6.8, 12 and 17 nm) is of a coherent rotation type, while that for long rod-shaped CoNi layers (t(CoNi)=150 nm, 1.0, 2.5 and 7.5 μm) can be consistently explained by a combination of coherent rotation and a curling mode. The effects of dipole–dipole interactions between nanowires and between adjacent magnetic layers in each nanowire on the reversal process have been discussed.  相似文献   

12.
We report on current-driven magnetization reversal in nanopillars with elements having perpendicular magnetic anisotropy. Whereas only the two uniform magnetization states are available under the action of a magnetic field, we observed current-induced Bloch domain walls in pillars as small as 50 x 100 nm(2). This domain wall state can be further controlled by current to restore the uniform states. The ability to nucleate and manipulate domain walls by a current gives insight into the reversal mechanisms of small nanoelements and provides new prospects for ultrahigh density spintronic devices.  相似文献   

13.
Bit patterned media (BPM) which utilize each magnetic nanostructured dot as one recorded bit has attracted much interest as a promising candidate for future high-density magnetic recording. In this study, the magnetization reversal behaviors of nanostructured L10-FePt, Co/Pt multilayer (ML), and CoPt/Ru dots are investigated. For Co/Pt and CoPt/Ru nanodots, the bi-stable state is maintained in a very wide size range up to several hundred nm, and the magnetization reversal is dominated by the nucleation of a small reversed nucleus with the dimension of domain wall width. On the other hand, the critical size for the bi-stability of L10-FePt is about 60 nm, and its magnetization reversal proceeds via domain wall displacement even for such a small dot size. These reversal behaviors, depending on the magnetic materials, might be attributed to the difference in structural inhomogeneity, such as defects. In addition to the magnetic properties, the structural uniformity of the material could be crucial for the BPM application.  相似文献   

14.
夏静  张溪超  赵国平 《物理学报》2013,62(22):227502-227502
运用一维和三维微磁学模拟探究了易轴与外场存在偏角β情况下Nd2Fe14B/α-Fe 双层膜的磁矩反转过程, 计算了磁矩反转过程中磁滞回线和磁能积, 并与实验结果进行了对比. 计算结果表明, 在膜面内的易轴偏角β严重影响磁矩反转过程. 当β≠0°时, 磁矩反转过程中无明显成核现象, 随着易轴偏角β的增大, 剩磁显著减小, 磁滞回线方形度变差, 导致磁能积急剧减小. 对于Nd2Fe14B(10 nm)/α-Fe(8 nm)双层膜, β=10°时, 最大磁能积下降30.3%. 在磁矩反转过程中, 总能量最大时对应的外磁场能随易轴偏角的增大而减小, 交换作用能先增大后减小, 磁晶各向异性能则随着易轴偏角的增大而增大. 软磁相厚度越大, 双层膜的磁能积受易轴偏角影响越大. 在膜面外的易轴偏角对磁矩反转过程也有类似的影响. 关键词: 微磁学模拟 磁晶易轴 磁能积 能量  相似文献   

15.
The magnetic anisotropy and magnetization reversal of single crystal Fe films with thickness of 45 monolayer (ML) grown on Si(111) have been investigated by ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM). Owing to the significant modification of the energy surface in remanent state by slight misorientation from (111) plane and a uniaxial magnetic anisotropy, the azimuthal angular dependence of in-plane resonance field shows a six-fold symmetry with a weak uniaxial contribution, while the remanence of hysteresis loops displays a two-fold one. The competition between the first and second magnetocrystalline anisotropies may result in the switching of in-plane easy axis of the system. Combining the FMR and VSM measurements, the magnetization reversal mechanism has also been determined.  相似文献   

16.
The magnetization reversal of ultrathin Co films on Cu(001) has been investigated by grazing ion scattering and magneto-optical Kerr effect. Differences in the behavior of surface and bulk magnetization are found and attributed to the reduced coordination and site symmetry at the surface. The reversal behavior of the surface magnetization depends on the chemical surface composition. For pure Co films, the reversal of the bulk magnetization is preceded by a complete reversal of the surface magnetization. A particular magnetic state of the surface is suggested as a precursor for magnetization reversal.  相似文献   

17.
The anisotropy of the soft layer in the Co100−xPtx/Co71Pt29 (x=0, 7 and 17) perpendicular exchange-coupled composite (ECC) films was varied by changing the Pt content. The effects of soft layer softness (thickness and anisotropy) on the coercivity and magnetization reversal mechanisms of ECC were studied. Results showed that both remanence ratio (Mr/Ms) and coercivity of the ECC films reduced with an increase in soft layer thickness. However, the rate of coercivity reduction reduced when soft layer anisotropy was increased simultaneously. This was confirmed by the following facts. For the ECC with Co soft layer, the magnetization reversal mechanism within the ECC grains changed from coherent rotation to domain wall motion when soft layer thickness was changed from 2 to 15 nm. The impact of soft layer thickness on the magnetization reversals of the ECC grains reduced with an increase in soft layer anisotropy. On the other hand, the change of soft layer easy axis direction could possibly change the reversal mechanism of the ECC grains. The above experimental results showed that the coercivity of ECC film was controlled by the reversal mechanism inside the ECC grains.  相似文献   

18.
We present an experimental investigation of the magnetization reversal process in NiFe/Cu(10 nm)/Co circular and elliptical nano-elements with different thickness of the magnetic layers. The results obtained using element sensitive X-ray resonant magnetic scattering (XRMS) were compared with the previous measurements showing that the dipolar interlayer coupling favours the antiparallel alignment of the two magnetization layers at remanance. In the case of circular shape, the increased thickness of the ferromagnetic layers stabilizes the antiparallel alignment of the layers over a wider field range. A similar effect, accompanied by a delay in the onset of the antiparallel alignment, is observed in the case of elliptical nano-elements and applying the external field along the longer axis of the elements, due to the additional shape anisotropy.  相似文献   

19.
The magnetization reversal in an array of Fe nanodots etched from the continuous iron film by a focused Ga+ ion beam has been studied. The size of the dots is 600 nm, and the interdot distances are equal to 3.8 μm, 900 nm, and 700 nm. The energy of the dipole-dipole interaction between the nanodots is estimated for arrays with different periods. It is demonstrated that the mechanisms of magnetization reversal are different in arrays of nanodots with strong and negligible dipole-dipole interactions.  相似文献   

20.
Jing Liu 《中国物理 B》2022,31(12):127502-127502
High critical current density ($> 10^{6}$ A/cm$^{2})$ is one of major obstacles to realize practical applications of the current-driven magnetization reversal devices. In this work, we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack. Under the assistance of an out-of-plane magnetic field, the magnetization can be fully reversed with a current density of about 10$^{4}$ A/cm$^{2}$. The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque. It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque, and the current-driven magnetization reversal will be more efficient in low-temperature range, while the magnetic field is helpful for the magnetization reversal in high-temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号