首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, a kind of solid polymer electrolyte (SPE) based on poly(vinylidene difluoride-co-hexafluoropropylene)/poly(methyl methacrylate) blends was prepared by a casting method to solve the safety problem of lithium secondary batteries. Owing to being plasticized with a room temperature ionic liquid, N-butyl-N′-methyl-imidiazolium hexafluorophosphate, the obtained SPE shows a thermal decomposition temperature over 300°C and an ionic conductivity close to 10−3 S cm−1. The SPE-3 sample, in which the weight of two polymers is equivalent, possesses an ionic conductivity of 0.45 × 10−3 S cm−1 at 25°C and presents an electrochemical window of 4.43 V. The ionic conductivity of the SPE-3 is as high as 1.73 × 10−3 S cm−1 at 75°C approaching to that of liquid electrolyte. The electrochemical performances of the Li/LiFePO4 cells confirmed its feasibility in lithium secondary batteries.  相似文献   

2.
ZrO2 nanoparticles have been prepared by poly acrylamide gel route. The synthesized nanosized ZrO2 have been incorporated into plasticized polymer electrolyte (PPE), P(ECH-EO): LiClO4: γ-BL system to understand the effect of ZrO2 on the ionic conductivity. The X-ray diffraction pattern of the synthesized ZrO2 nanoparticles reveals the crystalline phase. The X-ray diffraction patterns of P(ECH-EO) based NCPEM confirm the polymer-salt-nanoparticle complexation. The scanning electron microscope image of NCPEM confirms that the ZrO2 nanoparticles were distributed uniformly in the polymer matrix. The presence of nano filler has increased the ionic conductivity and the maximum dc conductivity value is found to be 6.24×10−6 S cm−1 at 303 K for 96(PPE): 4ZrO2 (mol%).  相似文献   

3.
Lorenzo Carbone  Jusef Hassoun 《Ionics》2016,22(12):2341-2346
Herein, we report a polymer cell using high-energy lithium metal anode, a composite sulfur-carbon cathode, and polyethylene oxide (PEO)-lithium trifluoromethan sulfonate (LiCF3SO3) electrolyte. The limited cost of raw materials as well as the very simple synthetic procedures, involving planetary ball milling (for S-C cathode) and solvent casting (for PEO-electrolyte), are expected to reflect into remarkable reduction of the economic impact of the proposed battery. Furthermore, the high energy of the Li-S cell and safety of the polymer configuration represent additional bonuses of the system. The S-C material, revealing a maximum capacity as high as 700 mAh g?1 in liquid electrolyte, is employed in a lithium-sulfur battery with the polymer configuration. The polymer cell delivers a capacity of 450 mAh g?1 at a voltage of about 2 V; hence, a theoretical energy density of 900 Wh kg?1 that may reflect into a high practical value, suitable for energy storage applications.  相似文献   

4.
李琦  章勇 《物理学报》2017,66(19):198201-198201
利用多巴胺氧化自聚合形成聚多巴胺(PDA)与ZnO结合形成PDA/ZnO复合阴极缓冲层,制备了以P3HT:PC_(61)BM为活性层的倒置结构聚合物太阳能电池,通过改变PDA的自聚合时间来分析复合阴极缓冲层对器件性能的影响.实验发现,随着PDA的自聚合时间的增加,聚合物太阳能电池的光电转换效率先增大后减小,当自聚合时间为10 min时,相应器件光伏性能达到最优值,其开路电压V_(OC)为0.66 V,短路电流密度J_(SC)为9.70 mA/cm~2,填充因子FF为68.06%,光电转换效率PCE为4.35%.器件性能改善的原因是由于PDA/ZnO复合阴极缓冲层减小了ZnO与ITO之间的接触电阻,同时PDA中存在大量的氨基有利于倒置太阳能电池阴极对电子的收集.  相似文献   

5.
Investigation on a new electrospun gel polymer electrolyte consisting of thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) (PVdF) has been made. Its characteristics were investigated by scanning electron microscopy, FT-IR, Differential Scanning Calorimeter (DSC) analysis. This kind of gel polymer electrolyte had a high ionic conductivity about 3.2 × 10− 3 S cm− 1 at room temperature, and exhibited a high electrochemical stability up to 5.0 V versus Li+/Li, good mechanical strength and stability to allow safe operation in rechargeable lithium-ion polymer batteries. A Li/GPE/LiFePO4 cell delivered a high discharge capacity when it was evaluated at 0.1 °C—rate at 25 °C (167.8 mAh g− 1). And a very stable cycle performance also existed under this low current density.  相似文献   

6.
Thin-film sodium-ion-conducting polymer electrolyte based on polyethylene oxide (PEO) system was prepared by solvent casting method. The thin-film electrolytes were characterized by X-ray diffraction (XRD), infrared (IR), cyclic voltammetry (CV) and alternating current conductivity, and Wagner’s polarization method. The complexation of salt with PEO was confirmed by XRD and IR studies. The charge transport of these electrolytes is mainly due to ions, which was confirmed by the transference number experiment. The conductivity studies show that the conductivity value of PEO/NaClO3 complex increases with the increase of temperature as well as the addition of low molecular weight polyethylene glycol, dimethyl formamide, and propylene carbonate. The electrolyte stability and cell reversibility were analyzed by CV studies. Electrochemical cells have been fabricated with a common cell configuration Na|electrolyte|(MnO2 + I2 + C + electrolyte), and their discharge characteristic studies were made through a load 100 kΩ at room temperature. The measured open circuit voltage ranges from 2.80 to 2.54 V with short circuit current ranges from 667 to 1,000 μA and several other cell parameters were evaluated. Finally, the merit of the composite cathode is found with the comparison of the MnO2 cathode.  相似文献   

7.
Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption–desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400–800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich–Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.  相似文献   

8.
A plasticized composite polymer electrolyte (PCPE) based on Poly (ethylene oxide) + NaI with Na2SiO3 as the ceramics filler and Poly (ethylene glycol) as the plasticizer has been prepared by solution cast technique. Effect of plasticization on microstrucutre and electrical properties of the materials has been investigated. The changes in the structural and microstructural properties of the material have been investigated by XRD and SEM studies. The electrical conductivity estimated using a. c. impedance spectroscopy was found to be dependent on plasticizer concentration. An enhancement in the ionic conductivity value by three times has been recorded on addition of plasticizer when compared with that of unplasticized composite polymer electrolyte. The temperature dependence of conductivity of the polymer films is found to obey the Arrhenius behavior below and above the melting temperature of PEO. The electrical transport has been found to be a thermally activated process with ions being the predominant charge carrier.  相似文献   

9.
10.
The cycling performance of silicon-carbon anodes in the electrolyte with different content (0, 2, 5, 10 wt%) fluorinated ethylene carbonate (FEC) was studied. Among all the electrolytes the injection of 2 wt% FEC into carbonate electrolyte, the retention capacity of silicon carbon anode enhanced from 54.81 to 83.82% after 50 cycles. The performance of SEI layer on the anode was characterized by SEM, EIS, FTIR, and XPS analysis. These studies reveal that the SEI layer formed in the FEC-containing electrolyte effectively reduced the capacity loss of the material and reduced the interfacial impedance.  相似文献   

11.
The dependences of the resistivity and complex magnetic permeability of (Co40Fe40B20)33.9(SiO2)66.1 composite-based multilayer films on the thickness of different metallic and semiconducting spacers are studied. It is found that in the presence of a continuous spacer with a resistivity on the order of 0.01 Ω m, the superparamagnetic state of these heterogeneous systems changes to ferromagnetic ordering.  相似文献   

12.
Developments in nanotechnology have led to innovative progress and converging technologies in engineering and science. These demand novel methodologies that enable efficient communications from the nanoscale all the way to decision-making criteria for actual production systems. In this paper, we discuss the convergence of nanotechnology and novel multi-scale modeling paradigms by using the fuel cell system as a benchmark example. This approach includes complex multi-phenomena at different time and length scales along with the introduction of an optimization framework for application-driven nanotechnology research trends. The modeling paradigm introduced here covers the novel holistic integration from atomistic/molecular phenomena to meso/continuum scales. System optimization is also discussed with respect to the reduced order parameters for a coarse-graining procedure in multi-scale model integration as well as system design. The development of a hierarchical multi-scale paradigm consolidates the theoretical analysis and enables large-scale decision-making of process level design, based on first-principles, and therefore promotes the convergence of nanotechnology to sustainable energy technologies.  相似文献   

13.
The possibility of oriented growth of thin copper films with a (200) texture on a SiO2/Si substrate by magnetron sputtering in medium vacuum is demonstrated for the case when a predeposited nickel layer with a (200) texture serves as an orienting sublayer.  相似文献   

14.
Abstract

New organic–inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (~ 10?nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.  相似文献   

15.
Surface nitridation of the Li4Ti5O12 particles was carried out by thermal treatment with urea as the nitrogen source in a controllable manner. The titanium nitride (TiN) was formed in the well-dispersed zones on the surface of the Li4Ti5O12 particles, depending on the coverage of the nitride. The surface TiN formed led to a great improvement of the conductivity of the oxide. The extent of the surface nitridation exhibited a large effect on electrochemical behaviors of the Li4Ti5O12 particles, with the Li4Ti5O12/TiN composite (prepared using 6 % urea) providing the best initial capacity and rate capability. Thus, the electrochemical performance of the Li4Ti5O12 particles can be achieved by optimizing surface nitridation of the oxide. The chemically inert TiN occupied the surface sites of the Li4Ti5O12 particles which may have prevented the electrolyte from decomposition and stabilized the surface structure of the Li4Ti5O12 particles, endowing the oxide with excellent cycleability  相似文献   

16.
17.
A novel composite alkaline polymer electrolyte based on poly(vinyl alcohol) (PVA) polymer matrix, titanium dioxide (TiO2) ceramic fillers, KOH, and H2O was prepared by a solution casting method. The properties of PVA-TiO2-KOH alkaline polymer electrolyte films were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and AC impedance techniques. DSC and XRD results showed that the domain of amorphous region in the PVA polymer matrix augmented when TiO2 filler was added. The SEM result showed that TiO2 particles dispersed into the PVA matrix although some TiO2 aggregates of several micrometers were formed. The alkaline polymer electrolyte showed excellent electrochemical properties. The room temperature (20 °C) ionic conductivity values of typical samples were between 0.102 and 0.171 S cm−1. The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had excellent electrochemical property at the low charge-discharge rate.  相似文献   

18.
The development of magnesium electrolytes for battery applications has been the demand for electrochemical devices. To meet such demand, in this work solid blend polymer electrolytes were prepared using polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) (92.5PVA:7.5PAN) as host polymer, magnesium chloride (MgCl2) of different molar mass percentage (m.m.%) (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6%) as salt and dimethylformamide (DMF) as solvent. Structural, vibrational, thermal, electrical, and electrochemical properties of the prepared electrolytes were investigated using different techniques such as X-ray diffraction pattern, FTIR spectroscopy analysis, differential scanning calorimetry (DSC), AC impedance measurement, and transference number measurement. X-ray diffraction studies confirm the minimum volume fraction of crystalline phase for the polymer electrolyte with 0.5 m.m.% of MgCl2. FTIR confirms the complex formation between host polymer and salt. DSC analysis proves the thermal transition of the prepared films are affected by salt concentration. The optimized material with 0.5 m.m.% of MgCl2 offers a maximum electrical conductivity of 1.01 × 10?3 S cm?1 at room temperature. The Mg2+ ion conduction in the blend polymer electrolyte is confirmed from transference number measurement. Electrochemical analysis demonstrates the promising characteristic of these polymer films suitable as electrolytes for primary magnesium batteries. Output potential and discharge characteristics have been analyzed for primary magnesium battery which is constructed using optimized conducting electrolyte.  相似文献   

19.
Poly(vinyl butyral) (PVB) is of particular interest because of its low cost, extremely wide temperature work range (? 20 to 120 °C), and efficient chemical stability. In this study, a gel polymer electrolyte (GPE) containing Li+ ions was fabricated by using dimethylacetylamine (DMA), lithium perchlorate (LiClO4), and PVB. The experimental results indicated that a highly transparent GPE with a high ionic conductivity (σ) could be obtained by mixing glue (DMA with a PVB content of 10 wt%) with a LiClO4 content of 6 wt%. It was found that the ionic conductivity (σ) of the GPE depended on the LiClO4 content, and the GPE with a LiClO4 content of 6 wt% exhibited a maximum σ of 7.73 mS cm?1, a viscosity coefficient of 3360 mPa s, and a transmittance greater than 89% (visible region) at room temperature. Furthermore, PVB improved the electrolyte solution leakage, and the LiClO4 was used as an ion supply source for the high σ of the GPE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号