首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cycling performance of lithium–sulfur batteries in binary electrolytes based on tetra(ethylene glycol)dimethyl ether (TEGDME) and 1,3-dioxolane(DOL) with lithium nitrate (LiNO3) additive were investigated. The highest ionic conductivity was obtained for 1 M LiN(CF3SO2)2 (LiTFSI) in TEGDME/DOL?=?33:67(volume ratio)-based electrolyte. The cyclic efficiency of lithium–sulfur batteries was dramatically increased with LiNO3 additive as a shuttle inhibitor in electrolytes. The lithium–sulfur cell assembled with 1 M LiTFSI in TEGDME/DOL containing 0.2 M LiNO3 additive for electrolyte, the elemental sulfur for cathode, and the lithium metal for anode demonstrated the initial discharge capacity of about 900 mAh g?1 and an enhanced cycling performance.  相似文献   

2.
Lithium nitrate (LiNO3) is reported as an effective additive to protect lithium anode in rechargeable lithium-sulfur battery. However, for its strong oxidation, cells containing LiNO3 still suffer from safety problems and poor cycle performance since LiNO3 can be reduced on cathode to form some irreversible products. In this study, a facile and effective method to pre-passivate lithium anode is proposed by simply immersing lithium plates in LiNO3 solution. The electrochemical properties show that the pretreatment is favorable for the construction of a protection layer on the surface of lithium anode. Cells with pretreated lithium show the coulombic efficiency of 80.6 % in the first cycle and 87.2 % after 100 cycles, far higher than the one with pure lithium. The discharge capacity is retained at 702 mA h g?1 after 100 cycles, and the result is better than those directly adding LiNO3 in electrolyte. It is believed that these improvements result from the high stability of surface film during the charge and discharge process, which can stabilize the structure of anode and suppress the shuttle effect.  相似文献   

3.
The oxidation of polysulfides to element sulfur in charge process was studied by solution thermodynamic analysis and means of cyclic voltammetry (CV), X-ray diffraction (XRD), and charge?Cdischarge test. Basing on the solution thermodynamic analysis, the oxidation process of polysulfides to element sulfur would arise only if the charge voltage exceeds 3.36 V in a lithium?Csulfur cell employing 1.0 M LiN(CF3SO2)2 in 1,2-dimethoxy ethane. Furthermore, the minimum of charge voltage which can push the oxidation would fall down with the increasing solubility of elemental sulfur in electrolyte solution. These analyses were confirmed by practical measurements. One new anodic peak corresponding to the oxidation process of polysulfides to solid sulfur was observed by CV. Both XRD patterns and charge?Cdischarge test showed that the element sulfur appeared in the cathode after the battery was charged over 3.4 V. Hence, the lithium?Csulfur cell charged over 3.4 V exhibited an improved cycle life since the capacity degradation between the first cycle and the second was depressed. In order to improve the energy efficiency, carbon disulfide was added in the electrolyte solution of lithium?Csulfur cell to increase the solubility of sulfur.  相似文献   

4.
Lithium-sulfur batteries have a poor cyclability and inferior rate capability due to the shuttle effect of lithium polysulfides. To solve these problems, a sulfur-coated MWCNT composite (S/MWCNT) was coated with conductive polypyrrole (PPy) to trap the polysulfides and facilitate charge and lithium ion transport. From the contact angle measurement, it is found that the PPy coating improves the wettability of the S/MWCNT composite. Compared with the bare S/MWCNT composite, the PPy-coated S/MWCNT composite cathode exhibited improved cycle stability and high-rate performance. A reversible discharge capacity of 671 mAh g?1 was maintained after 50 cycles at 3 C for the PPy-coated composite. The effect of PPy coating on kinetic property was investigated by electrochemical impedance spectroscopy (EIS). The electrolyte resistance, surface film resistance, charge transfer resistance, lithium ion diffusion coefficient, and exchange current density were evaluated from the EIS measurements. The EIS results reveal that the PPy coating increases both Li ion diffusion into the cathode and exchange current density. The as-prepared PPy-coated S/MWCNT composite can be considered to be a promising candidate for high capacity and high-rate performance cathode material.  相似文献   

5.
Manganese oxide-based cathodes are one of the most promising lithium-ion battery (LIB) cathode materials due to their cost-effectiveness, high discharge voltage plateau (above 4.0 V vs. Li/Li+), superior rate capability, and environmental benignity. However, these batteries using conventional LiPF6-based electrolytes suffer from Mn dissolution and poor cyclic capability at elevated temperature. In this paper, the ionic liquid (IL)-based electrolytes, consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfon)imidate (PYR1,4-TFSI), propylene carbonate (PC), lithium bis(trifluoromethanesulfon)imide (LiTFSI), and lithium oxalyldifluoroborate (LiDFOB) additive, were explored for improving the high temperature performance of the LiMn2O4 batteries. It was demonstrated that LiTFSI-ILs/PC electrolyte associated with LiDFOB addition possessed less Mn dissolution and Al corrosion at the elevated temperature in LiMn2O4/Li batteries. Cyclic voltammetry and electrochemical impedance spectroscopy implied that this kind of electrolyte also contributed to the formation of a highly stable solid electrolyte interface (SEI), which was in accordance with the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. Cyclic voltammetry and electrochemical impedance spectroscopy implied that the cells using this kind of electrolyte exhibited better interfacial stability, which was further verified by the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. These unique characteristics would endow this kind of electrolyte a very promising candidate for the manganese oxide-based batteries.  相似文献   

6.
Yan Yuan  Hai Lu  Zhao Fang  Baizhen Chen 《Ionics》2016,22(9):1509-1515
A unique structured hollow carbon nanofiber–sulfur composite material (HCF–S) was fabricated and characterized in lithium-sulfur batteries. It is found that a part of spherical sulfur particles are located in the voids formed by the intertwined fibers and the others are confined in hollow channel of the HCF. The high conductive and porous HCF favors the construction of stable three-dimensional conducting network and convenient infiltration of the electrolytes into the cathode. The HCF–S cathode exhibits excellent electrochemical performance in the electrolyte with LiNO3. By contrast, the ionic liquid electrolyte provides insufficient shuttle suppression and weakens ion transport, which leads to poor cycle and rate capability.  相似文献   

7.
S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g?1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g?1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.  相似文献   

8.
Yuan Dong  Run-Tian He  Li-Zhen Fan 《Ionics》2017,23(12):3329-3337
Rechargeable lithium-sulfur batteries are deemed to be a promising energy supply to next-generation high energy power system, yet dissolution of lithium polysulfides in the electrolyte leads to poor cycling performance. Here, we report an approach to assemble graphene and polydopamine double-wrapped porous carbon/sulfur (GN-PD-PC-S) for lithium-sulfur batteries. Remarkably, the double-wrapping graphene and polydopamine further help confine the sulfur and polysulfides inside the mesopores and micropores of porous carbon. Moreover, the hierarchical porous structures provide a conductive network for electron transfer and facilitate the effective accommodation of the volume change of sulfur. The GN-PD-PC-S cathode presents an excellent cycling stability of 821 mAh g?1 after 100 cycles, with a favorable high-rate capability of 496 mAh g?1 at a current density of 2 A g?1. Our results indicate the importance of chemically synergistic effect of polymer and carbon in the electrode system for achieving high-performance electrodes in rechargeable lithium-sulfur batteries.  相似文献   

9.
Lithium/sulfur (Li/S) batteries have a high theoretical specific capacity of 1672 mAh g?1. However, the insulation of the elemental sulfur and polysulfides dissolution could result in poor cycling performance of Li/S batteries, thus restricting the industrialization process. Here, we prepared sulfur-based composite by thermal treatment. The modified acetylene black (H-AB) was used as a carrier to fix sulfur. The H-AB could interact with polysulfides and reduce the dissolution of polysulfides in the electrolyte. Nonetheless, the conductivity of H-AB relatively reduced. So the conductivity of the sulfur electrode would be improved by the addition of the conductive agent (AB). In this paper, the different content of conductive agent (AB) in the sulfur electrode was studied. The electrochemical tests indicate that the discharge capacity of the sulfur electrode can be increased by increasing the conductive agent (AB) content. The H-AB@S composite electrode with 30 wt.% conductive agent has the best cycle property. The discharge capacity still remains at 563 mAh g?1 after 100 cycles at 0.1 C, which is 71% retention of the highest discharge capacity.  相似文献   

10.
The ionic liquid polymer electrolyte (IL-PE) membrane is prepared by ultraviolet (UV) cross-linking technology with polyurethane acrylate (PUA), methyl methacrylate (MMA), ionic liquid (Py13TFSI), lithium salt (LiTFSI), ethylene glycol dimethacrylate (EGDMA), and benzoyl peroxide (BPO). N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py13TFSI) ionic liquid is synthesized by mixing N-methyl-N-propyl pyrrolidinium bromide (Py13Br) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The addition of Py13TFSI to polymer electrolyte membranes leads to network structures by the chain cross-linking. The resultant electrolyte membranes display the room temperature ionic conductivity of 1.37 × 10?3 S cm?1 and the lithium ions transference number of 0.22. The electrochemical stability window of IL-PE is about 4.8 V (vs. Li+/Li), indicating sufficient electrochemical stability. The interfacial resistances between the IL-PE and the electrodes have the less change after 10 cycles than before 10 cycles. IL-PE has better compatibility with the LiFePO4 electrode and the Li electrode after 10 cycles. The first discharge performance of Li/IL-PE/LiFePO4 half-cell shows a capacity of 151.9 mAh g?1 and coulombic efficiency of 87.9%. The discharge capacity is 131.9 mAh g?1 with 95.5% coulombic efficiency after 80 cycles. Therefore, the battery using the IL-PE exhibits a good cycle and rate performance.  相似文献   

11.
In order to improve the rate and reversible capacity of lithium-sulfur (Li-S) battery, a reagent of dithiothreitol (DTT) was utilized to check the dissolution and shuttle of long-chain lithium polysulfides (LiPSs) by cutting the disulfide bond (–S–S– bonds) in them. The slurry of DTT-doped multi-walled carbon nanotubes (MWCNTs) was coated on the surface of sulfur cathode as a shield to slice the long-chain LiPSs to short-chain ones for checking the dissolution and migration of LiPSs to lithium anode. The morphology and structure of the electrodes were observed by scanning electron microscopy (SEM). The electrochemical performance was tested by galvanostatic charge-discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The initial discharge capacity of S-DTT- carbon nanotube paper (CNTP) electrode reached 1670 and 949 mAh/g at 0.05 and 2 C respectively with a coulombic efficiency of over 99%. The electrode maintained a reversible specific capacity of 949 mAh/g after 45 cycles at 2 C. This suggested that the DTT-doped MWCNT coating can restrain shuttle effect and improve the rate and capacity of Li-S battery. The S-DTT-CNTP electrode not only accommodates the volume expansion but also provides stable electronics and ions channels.  相似文献   

12.
Li2CoSiO4, a silicate olivine cathode for lithium rechargeable batteries, is synthesized for the first time by sol–gel method using polyacrylic acid (PAA) as the chelating agent. Coupled thermal and vibrational analysis of the gel and also the X-ray diffraction pattern confirms the formation of the sample at 800 °C. 1-Butyl-1-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (BMPyTFSI) solutions of lithium bis(trifuloromethansulfonyl)imide (LiTFSI) having a concentration of 0.2 mol kg?1 is used as electrolyte. The electrochemical stability window of this electrolyte is found to be >5 V by linear sweep voltammetry technique. The compatibility of Li2CoSiO4 with 0.2 mol kg?1 LiTFSI-BMPyTFSI electrolyte is tested by charge–discharge cycles which show charging and discharging capacities of about 204 and 32 mAh g?1, respectively, in the first cycle.  相似文献   

13.
Electrodeposition of aluminum from ionic liquids has been considered a promising approach to low-temperature aluminum electrolysis. In this study, we first investigated the electrochemical stability of 1-ethyl-3-methylimidazolium chloride ([Emim][Al2Cl7]) electrolyte, which is a typically used electrolyte for aluminum electrodeposition. It was found that part of imidazole ions decomposed on the cathode during the electrolysis process, especially when the temperature was at or over 353 K. In order to enhance the stability of the electrolyte, we further studied the effects of lithium salt and lithium bis(oxalato)borate (LiBOB), on the electrochemical stability of the [Emim][Al2Cl7] ionic liquid system. It was found that the electrochemical window of the electrolyte was broadened from 2.59 to 2.74 V at 373 K by addition of 1 mol% LiBOB. With the existence of LiBOB, the reduction current density of Al2Cl7 - increased before ?0.58 V and the electrodissolution of Al was more complete. The possible mechanism on the LiBOB increases the stability of the electrolyte systems also discussed based on our theoretical calculations.  相似文献   

14.
A novel phosphazene groups modified sulfur composites cathode [triphosphazene sulfide composite (PS) or nitroaniline–triphosphazene disulfide composite (NPS)] which can give good affinity with electrolytes was prepared. Their chemical structures were identified by FTIR and XRD analysis. SEM analysis showed PS and NPS had a denser and rougher surface structure than elemental sulfur, with many tiny pores on the surface. Contact angles measurement showed that PS had a hydrophilic surface, which exhibited better affinity of ether solvent. When used as a cathode material in lithium–sulfur batteries, its initial discharge capacity was 1,109 mAh/g for NPS, 784 mAh/g for PS. Discharge capacity of NPS was higher than charge capacity, which implied nitroanilino base on sulfur particles involving in generation of polysulfides.  相似文献   

15.
The electrochemical characteristics of the sulfur composite cathode for reversible lithium storage were investigated. The sulfur composites showed novel electrochemical characteristics as well as high specific capacity and good cycleability. The sulfur composite presented the average discharge voltage of 1.9 V, which was just the half of conventional LiCoO2 cathode materials, indicating that the double cells in series presented the same working voltage as conventional LiCoO2 cells and meaning that the sulfur composite cells will have good interchangeability with conventional LiCoO2 cells. The overcharge test showed that the sulfur composite cell cannot be charged over 5.0 V, indicating that the sulfur composite cell presented the intrinsic safety for overcharge. Overcharge can cause serious problems for the conventional Li ion cells. The overcharge test also showed that the sulfur composite cell was destroyed when the cell was charged over 4.0 V, resulting in that the cell cannot normally be discharged again. It is found, however, that the sulfur composite cell can be discharged again at very low current density of a 0.002-C rate after the cell was overcharged. Being much safer than lithium metal anode, the graphite anode was used to fabricate sulfur composite/graphite lithium ion cells with a prelithiated sulfur composite cathode, which was produced by electrochemical lithiation. The charge/discharge and cycling characteristics of the sulfur composite/graphite cell was investigated. The result showed that the sulfur composite/graphite cells can be normally cycled and showed the different voltages from that of the cell with the lithium metal anode. This paves the effective way to fabricate safer sulfur composite/graphite lithium ion cells.  相似文献   

16.
Gel electrolytes and solid electrolytes have been reported as a potential element to slow down the polysulfide shuttle by reducing its mobility in the electrolytes. The preparation of sulfur-conductive polymer composites, or sulfur-carbon composites, has been reported as softening the impact of the shuttle effects. Unlike Li-ion batteries so far, no electrolyte is found to be optimal for Li–S batteries at all conditions. Taking into account all these factors, in the present study, an attempt has been made to develop solid polymer electrolytes in conjunction with non-aqueous liquid electrolytes along with inert fillers for Li–S batteries. Poly-ethylene oxide (PEO)-based composite gel polymer electrolytes (CGPE) comprising a combination of plasticizers, namely 1,3-dioxolane (DIOX)/tetraethylene glycol dimethylether (TEGDME) and a lithium salt (LiTf) with the addition of ceramic filler, barium titanate (BaTiO3) have been prepared using a simple solution casting technique in an argon atmosphere. The as-prepared polymer electrolyte films were subjected to SEM, ionic conductivity, TG/DTA, and FTIR analyses. A symmetric cell composed of Li/CGPE/Li was assembled, and the variation of interfacial resistance as a function of time was also measured. The ionic conductivity was found to be increased as a function of temperature. The lithium transference number (Lit +) was measured, and the value was calculated as 0.7 which is sufficient for battery applications. The electrochemical stability window of the sample was studied by linear sweep voltammetry, and the polymer electrolyte film was found to be stable up to 5.7 V. The TG/DTA analysis reveals that this CGPE is thermally stable up to 350 °C. The compatibility studies exhibited that CGPE has better interracial properties with lithium metal anode. The interaction between the PEO and salt has been identified by an FTIR analysis.  相似文献   

17.
Environmental research has the objective of finding solutions to environmental degradation. To this aim, an optimized solid bio-polymer electrolyte (BPE) based on cellulose acetate (CA) with lithium nitrate (LiNO3) has been developed to achieve the possible energy storage Li-ion batteries. CA is one of the natural polymers with very good film forming capacity. The widespread use of CA is attributed to the availability of renewable resources, non-toxic nature, low cost, and bio-compatible material. Here, we demonstrate an extremely simplest process of solution-casting technique for the development of BPE by incorporating various LiNO3 compositions (wt.%) with bio-polymer material CA. The crystalline nature of the CA with LiNO3 has been analyzed by X-ray diffraction (XRD) measurement. The bio-polymer-salt complex formation and the biopolymer-proton interactions have been investigated through Fourier transform infrared (FTIR) spectroscopy. Electrochemical impedance spectroscopy has been used to examine the ionic conductivity of the BPEs at room temperature (303 K). The highest ionic conductivity of 1.93 × 10?3S/cm has been achieved for 50CA/50LiNO3 polymer electrolyte. Electrochemical studies show that highest BPE has high electrochemical stability windows. The conducting species is found to be Li+ ion, which has been confirmed by transference number measurement (TNM). Primary lithium battery with discharge profile has been constructed for 50CA/50LiNO3. This research will help to identify a new lithium ion membrane for battery technology and other electrochemical device applications.  相似文献   

18.
M. Kazazi 《Ionics》2016,22(7):1103-1112
A sulfur-multi-walled carbon nanotube composite (S/MWCNT) was prepared using a two-step procedure of liquid-phase infiltration and melt diffusion. Polypyrrole (PPy) conductive polymer was coated on the surface of the as-prepared S/MWCNT composite by in situ polymerization of pyrrole monomer to obtain PPy/S/MWCNT composite. The composite materials were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The electrochemical performance of the as-prepared cathode material was investigated at 25, 40, and 70 °C at various rates. It was found that temperature has dual effects on the performance of Li/S cells. Increasing the temperature, on one hand, facilitates the lithium ion transport through the cathode and, on the other hand, leads to faster dissolution of active material into the electrolyte. The PPy coating can effectively trap polysulfides in its porous structure, even at elevated temperatures, leading to the improvement of the discharge capacity, the cycle stability, and the coulombic efficiency. The electrochemical impedance spectroscopy (EIS) results reveal that the PPy coating reduces the formation of passive layer on the cathode surface, even at high temperatures, resulting in a better elevated temperature performance. A high reversible capacity of 945 mAh g?1 was maintained after 50 cycles for the PPy/S/MWCNT composite at 70 °C at a rate of 0.5 C.  相似文献   

19.
High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~?200 °C), ionic conductivity (6.42?×?10?4 S cm?1), lithium ion conductivity (1.40?×?10?4 S cm?1 at 30 °C), and wide electrochemical stability window (~?4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g?1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.  相似文献   

20.
A new functionalized ionic liquid (IL) based on cyclic quaternary ammonium cations with ester group and bis(trifluoromethanesulfonyl)imide ([TFSI]?) anion, namely, N-methyl-N-methoxycarbonylpiperidinium bis(trifluoromethanesulfonyl)imide ([MMOCPip][TFSI]), was synthesized and characterized. Physical and electrochemical properties, including Li-ion transference number, ionic conductivity, and electrochemical stability, were investigated. The electrochemical window of [MMOCPip][TFSI] was 6 V, which was wide enough to be used as a common electrolyte material. The Li-ion transference number of this IL electrolyte containing 0.1 M LiTFSI was 0.56. The half-cell tests indicated that the [MMOCPip][TFSI] obviously improved the cyclability of a Li/LiFePO4 cell. For the Li/LiFePO4 half-cells, after 20 cycles at room temperature at 0.1 C, the discharge capacity was 109.7 mAh g?1 with 98.7% capacity retention in the [MMOCPip][TFSI]/0.1 M LiTFSI electrolyte. The good electrochemical performance demonstrated that the [MMOCPip][TFSI] could be used as electrolyte for lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号