首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

2.
The synthesis of AB diblock copolymer polyampholyte polymer brushes of the type Si/SiO2//poly(acrylic acid-b-vinyl pyridine) prepared using atom transfer radical polymerization is reported. Both 2- and 4-vinyl pyridine have been used. The diblock polyampholyte polymer brushes demonstrate stimuli-responsive behavior with respect to pH, showing both polyelectrolyte and polyampholyte effects. Furthermore, we have quaternized the 4-vinyl pyridine segments to form a mixed weak/strong, or annealed/quenched, polyelectrolyte system. The quaternized polymer brush exhibits different pH-responsive behavior, with decreasing film thickness being observed with increasing pH.  相似文献   

3.
Surface-initiated reverse atom transfer radical polymerization (reverse ATRP) technique was used to synthesize well-controlled nanostructure of polymer brushes from silicon wafer. Kinetic studies revealed a linear increase in polymer film thickness with reaction time, indicating that chain growth from surface was a controlled process with a “living” characteristic. This technique provides a simple and efficient approach to create various nanostructures of polymer brushes potentially used for designing nanodevices. Analysis of the polymer brush layers was conducted using ellipsometry, XPS, AFM and contact angle measurements, respectively.  相似文献   

4.
We present an account of our research into polyelectrolyte polymer brushes that are capable of acting as stimuli-responsive films. We first detail the synthesis of poly(acrylic acid) polymer brushes using ATRP in a "grafting from" strategy. Significantly, we employed a chemical-free deprotection step that should leave the anchoring ester groups intact. We have demonstrated how these polymer assemblies respond to stimuli such as pH and electrolyte concentration. We have used poly(acrylic acid) polymer brushes for the synthesis of metallic nanoparticles and review this work. We have used XPS, ATR-FTIR, and AFM spectroscopy to show the presence of silver and palladium nanoparticles within polymer brushes. Finally, we report the synthesis of AB diblock polyampholyte polymer brushes that represent an extension of polyelectrolyte polymer brushes.  相似文献   

5.
Tapered copolymer brushes of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) were synthesized via surface-initiated atom transfer radical polymerization (ATRP) by gradual addition of HEMA to a reaction mixture that originally only had MMA as monomer. The copolymer brush grew linearly with polymerization time. The tapered copolymer brushes responded to selective solvent treatments. For the same tapered copolymer brush, pretreating the surface with methylene chloride made the surface more hydrophobic; pretreating the surface with methanol increased the surface hydrophilicity. This change in surface properties was reversible and considered to be caused by the solvent induced rearrangement of the polymer brushes, which is supported by atomic force microscopy images of the surface. Our work demonstrates that the properties of the tapered copolymer brush could be finely tuned by careful control of the composition profile.  相似文献   

6.
The modification of silicon oxide with poly(ethylene glycol) to effectively eliminate protein adsorption has proven to be technically challenging. In this paper, we demonstrate that surface-initiated atom transfer radical polymerization (SI-ATRP) of oligo(ethylene glycol) methyl methacrylate (OEGMA) successfully produces polymer coatings on silicon oxide that have excellent protein resistance in a biological milieu. The level of serum adsorption on these coatings is below the detection limit of ellipsometry. We also demonstrate a new soft lithography method via which SI-ATRP is integrated with microcontact printing to create micropatterns of poly(OEGMA) on glass that can spatially direct the adsorption of proteins on the bare regions of the substrate. This ensemble of methods will be useful in screening biological interactions where nonspecific binding must be suppressed to discern low probability binding events from a complex mixture and to pattern anchorage-dependent cells on glass and silicon oxide.  相似文献   

7.
Hairy nanoparticles (HNPs) constitute a class of hybrid nanocomposites that are resistant to aggregation and agglomeration, although the green, large-scale synthesis of HNPs remains a challenge. In this work, 25 nm-diameter silica-core HNPs with a poly(methyl methacrylate) (PMMA) shell were synthesized using a graft-from approach in aqueous miniemulsion, employing atom transfer radical polymerization with activators regenerated by electron transfer (ARGET-ATRP). In particular, this work used tetrabutylammonium bromide (TBAB)-assisted phase transfer of monomer, markedly improving upon earlier methods by showing that phase transfer could take place in the absence of organic solvents. Furthermore, syntheses with selected monomer addition rates produced HNP graft densities ranging from 0.011 to 0.017 chains/nm2 and shell thicknesses ranging from 2.5 to 11 nm. Finally, analysis of reaction kinetics revealed that shell growth reached completion in as little as 2 hr, confirmed by the synthesis of >1 g of PMMA-shell HNPs in a reduced timeframe.  相似文献   

8.
The nucleoside or modified nucleoside level in biological fluids reflects the pathological or physiological state of the body. Boronate affinity absorbents are widely used to selectively extract nucleosides from complex samples. In this work, a novel functionalized absorbent was synthesized by attaching 4‐mercaptophenylboronic acid to gold nanoparticles on modified attapulgite. The surface of the attapulgite was modified by poly(acryloyloxyethyltrimethyl ammonium chloride) by atom transfer radical polymerization, creating many polymer brushes on the surface. The resultant material exhibited superior binding capacity (30.83 mg/g) for adenosine and was able to capture cis‐diol nucleosides from 1000‐fold interferences. Finally, to demonstrate its potential for biomolecule extraction, this boronate affinity material was used to preconcentrate nucleosides from human urine and plasma.  相似文献   

9.
Surface-initiated atom-transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA) was carried out on the hydrogen-terminated Si(100) substrates with surface-tethered alpha-bromoester initiator. Kinetic studies confirmed an approximately linear increase in polymer film thickness with reaction time, indicating that chain growth from the surface was a controlled "living" process. The "living" character of the surface-grafted PEGMA chains was further ascertained by the subsequent extension of these graft chains, and thus the graft layer. Well-defined polymer brushes of near 100 nm in thickness were grafted on the Si(100) surface in 8 h under ambient temperature in an aqueous medium. The hydroxyl end groups of the poly(ethylene glycol) (PEG) side chains of the grafted PEGMA polymer were derivatized into various functional groups, including chloride, amine, aldehyde, and carboxylic acid groups. The surface-functionalized silicon substrates were characterized by reflectance FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). Covalent attachment and derivatization of the well-defined PEGMA polymer brushes can broaden considerably the functionality of single-crystal silicon surfaces.  相似文献   

10.
We report the preparation and characterization of poly(N-isopropylacrylamide) (PNIPAAm) polymer brushes exhibiting controlled lateral variations in the patchiness of polymer chains. These gradients were achieved through an atom transfer radical polymerization (ATRP) grafting-from approach utilizing surfaces on which the spatial profile of the initiator density was carefully controlled. Initiator density gradients were formed on Au by first preparing a hexadecanethiol (HDT) density gradient, by reductive desorption using a laterally anisotropic electrochemical gradient. The bare areas in the original HDT gradient were then back-filled with a disulfide initiator, (BrC(CH3)2COO(CH2)11S)2. The initiator coverage was characterized by X-ray photoelectron spectroscopy (XPS). Then, surface-initiated ATRP was utilized to transfer the initiator density gradient into gradients of PNIPAAm chain density. Ellipsometry, surface plasmon resonance (SPR), and atomic force microscopy (AFM) were used to characterize these PNIPAAm density gradients. The defining characteristic of the PNIPAAm gradients is the evolution of the morphology from discontinuous mushroom structures at extremely low grafting densities to heterogeneous patchy structures at intermediate grafting densities. The size of the patchy domains gradually increases, until at a high grafting density region, the morphology evolves to a smoother, presumably more extended, structure.  相似文献   

11.
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m2/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins.  相似文献   

12.
Diblock star polymers were synthesized via atom transfer radical polymerization from a palladium porphyrin macroinitiator. The arms of the star polymers had an amphiphilic design, with the central Pd-porphyrin surrounded by a relatively hydrophobic block of poly(butyl acrylate) and terminated by a hydrophilic block of poly(oligoethyleneglycol monomethylether monomethacrylate). The size of both the interior and exterior blocks of the polymer arms were tuned over a wide range of molecular weights with the exterior block used to solubilize the stars in polar media. The star polymers showed enhanced reactivity in the oxidation of 2-furaldehyde relative to a small molecule porphyrin, suggesting that the polymer backbone aids with catalytic turnover. Oxygen diffusion studies indicate that the polymer backbone shields the porphyrin excited state from oxygen quenching. Shielding is independent of molecular weight and polymer composition, but it is not pronounced enough to retard the rate of singlet oxygen generation under preparative photooxidation conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4939–4951, 2006  相似文献   

13.
The peptide Ac‐Ser‐Ala‐Gly‐Ala‐Gly‐Glu‐Gly‐Ala‐Gly‐Ala‐Gly‐Ser‐Gly‐OH was prepared with solid‐phase peptide chemistry. Before the removal of the peptide from the solid support, the alcohol side groups of the two serines were functionalized with an α‐bromo ester moiety to create a bifunctional initiator. This peptide‐based initiator was used in solution for the atom transfer radical polymerization of methyl methacrylate to yield a well‐defined ABA triblock copolymer, in which the poly(methyl methacrylate) end blocks had a number‐average molecular weight of 1.1 kg/mol (based on 1H NMR spectroscopy) and a polydispersity of 1.17. The aggregation behavior of this amphiphilic triblock copolymer was then investigated. Upon the suspension of the polymer in a mixture of tetrahydrofuran and water, followed by the removal of tetrahydrofuran, spherical aggregates were formed. By the application of different electron microscopy techniques, it was determined that these aggregates were polymersomes, presumably coexisting with large compound micelles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6355–6366, 2005  相似文献   

14.
The current paper reports the synthesis of a highly hydrophilic, antifouling dendronized poly(3,4,5-tris(2-(2-(2-hydroxylethoxy)ethoxy)ethoxy)benzyl methacrylate) (PolyPEG) brush using surface initiated atom transfer radical polymerization (SI-ATRP) on PDMS substrates. The PDMS substrates were first oxidized in H2SO4/H2O2 solution to transform the Si-CH3 groups on their surfaces into Si-OH groups. Subsequently, a surface initiator for ATRP was immobilized onto the PDMS surface, and PolyPEG was finally grafted onto the PDMS surface via copper-mediated ATRP. Various characterization techniques, including contact angle measurements, attenuated total reflection infrared spectroscopy, and X-ray photoelectron spectroscopy, were used to ascertain the successful grafting of the PolyPEG brush onto the PDMS surface. Furthermore, the wettability and stability of the PDMS-PolyPEG surface were examined by contact angle measurements. Anti-adhesion properties were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the PDMS-PolyPEG surface exhibited durable wettability and stability, as well as significantly anti-adhesion properties, compared with native PDMS surfaces. Additionally, our results present possible uses for the PDMS-PolyPEG surface as adhesion barriers and anti-fouling or functional surfaces in biomedical applications.  相似文献   

15.
16.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

17.
Effect of residual copper on stability of molecular brushes with poly(n-butyl acrylate) (PBA) side chains was studied. The brushes were prepared by atom transfer radical polymerization (ATRP) using the grafting-from approach. Although the copper concentration was decreased down to below ten ppm levels by passing through alumina column, further removal was required to prevent crosslinking reactions. Further removal was performed by dialysis or precipitation.  相似文献   

18.
Sun X  Liu J  Lee ML 《Electrophoresis》2008,29(13):2760-2767
In-channel atom transfer radical polymerization (ATRP) was used to graft a PEG layer on the surface of microchannels formed in poly(glycidyl methacrylate)-co-(methyl methacrylate) (PGMAMMA) microfluidic devices. The patterned and cover plates were first anchored with ATRP initiator and then thermally bonded together, followed by pumping a solution containing monomer, catalyst, and ligand into the channel to perform ATRP. A PEG-functionalized layer was grafted on the microchannel wall, which resists protein adsorption. X-ray photoelectron spectroscopy (XPS) was used to investigate the initiator-bound surface, and EOF was measured to evaluate the PEG-grafted PGMAMMA microchannel. Fast, efficient, and reproducible separations of amino acids, peptides, and proteins were obtained using the resultant microdevices. Separation efficiencies were higher than 1.0x10(4) plates for a 3.5 cm separation microchannel. Compared with microdevices modified using a previously reported ATRP technique, these in-channel modified microdevices demonstrated better long-term stability.  相似文献   

19.
We report the synthesis of random polyampholyte brushes containing 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid (MAA). The preparation of polyampholyte brushes is performed by the “grafting from” strategy using surface‐initiated atom transfer radical polymerization (ATRP). The first step consists in the formation of the self‐assembled monolayer of the ATRP initiator. Secondly, the chains are grown from the surface by controlled/“living” radical polymerization. The random copolymer brushes and the corresponding homopolymers brushes containing 2‐(dimethylamino)ethyl methacrylate and tert‐butyl methacrylate (tBuMA) are prepared. The last step is the deprotection of the tBuMA form to the MAA segment by in situ hydrolysis reaction. The annealed DMAEMA group can also be converted to the quenched form by in situ quaternization reaction. This results in the formation of “annealed” and “semiannealed” polyampholyte brushes. The “annealed” polyampholyte corresponds to the random copolymer that contains only annealed units, weak acid and weak base. The “semiannealed” polyampholyte consists of the mixture of annealed (weak acid) and quenched (quaternized segment) units. Polyampholyte brushes with various grafting densities are synthesized and carefully characterized using surface techniques such as ellipsometry and FTIR‐ATR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4305–4319, 2008  相似文献   

20.
An effective approach is described for the synthesis of binary patterned polymer brushes using a combination of capillary force lithography and surface-initiated polymerization. First, the approach calls for an ultrathin polystyrene (PS) mask to be deposited, in a pattern, over a surface to which a layer of polymerization initiator has already been anchored. Next, surface-initiated atom transfer radical polymerization (ATRP) is performed. This can graft the initial polymer brush onto those areas of the surface unprotected by the PS mask. After grafting is complete, the PS mask is removed and a second brush is synthesized on the newly exposed areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号