首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

2.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

3.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

4.
The bis(trifluoromethyl)phosphanide ion, P(CF(3))(2)(-), decomposes slowly above -30 degrees C in CH(2)Cl(2) and THF solution. An increase of the thermal stability of the P(CF(3))(2)(-) moiety is observed if excess CS(2) is added. The P(CF(3))(2)(-) moiety is stabilized because of the formation of the bis(trifluoromethyl)phosphanodithioformate anion. Solutions of a [P(CF(3))(2)CS(2)](-) salt still act as a source of P(CF(3))(2)(-), even in the presence of excess of CS(2). The stable compound [18-crown-6-K][P(CF(3))(2)CS(2)] was characterized by multinuclear NMR spectroscopy, elemental analysis, and vibrational spectroscopy in combination with quantum chemical calculations. The thermally unstable P(C(6)F(5))(2)(-) ion decomposes even at -78 degrees C in solution giving polymeric material. The intermediate formation of the bis(pentafluorophenyl)phosphanide anion in the presence of excess of CS(2) allows the isolation of [18-crown-6-K][P(C(6)F(5))(2)CS(2)]. The novel compound crystallizes with one solvent molecule CH(2)Cl(2) in the monoclinic space group P2(1)/n with a = 1151.8(1) pm, b = 1498.1(2) pm, c = 2018.2(2) pm, beta = 102.58(1) degrees, and Z = 4. Optimized geometric parameters of the [P(C(6)F(5))(2)CS(2)](-) ion at the B3PW91/6-311G(d) level of theory are in excellent agreement with the experimental values.  相似文献   

5.
The CCl(3)(+) and CBr(3)(+) cations have been synthesized by oxidation of a halide ligand of CCl(4) and CBr(4) at -78 degrees C in SO(2)ClF solvent by use of [XeOTeF(5)][Sb(OTeF(5))(6)]. The CBr(3)(+) cation reacts further with BrOTeF(5) to give CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(2). The [XeOTeF(5)][Sb(OTeF(5))(6)] salt was also found to react with BrOTeF(5) in SO(2)ClF solvent at -78 degrees C to give the Br(OTeF(5))(2)(+) cation. The CCl(3)(+), CBr(3)(+), CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(OTeF(5))(2)(+) cations and C(OTeF(5))(4) have been characterized in SO(2)ClF solution by (13)C and/or (19)F NMR spectroscopy at -78 degrees C. The X-ray crystal structures of the CCl(3)(+), CBr(3)(+), and C(OTeF(5))(3)(+) cations have been determined in [CCl(3)][Sb(OTeF(5))(6)], [CBr(3)][Sb(OTeF(5))(6)].SO(2)ClF, and [C(OTeF(5))(3)][Sb(OTeF(5))(6)].3SO(2)ClF at -173 degrees C. The CCl(3)(+) and CBr(3)(+) salts were stable at room temperature, whereas the CBr(n)(OTeF(5))(3-n)(+) salts were stable at 0 degrees C for several hours. The cations were found to be trigonal planar about carbon, with the CCl(3)(+) and CBr(3)(+) cations showing no significant interactions between their carbon atoms and the fluorine atoms of the Sb(OTeF(5))(6)(-) anions. In contrast, the C(OTeF(5))(3)(+) cation interacts with an oxygen of each of two SO(2)ClF molecules by coordination along the three-fold axis of the cation. The solid-state Raman spectra of the Sb(OTeF(5))(6)(-) salts of CCl(3)(+) and CBr(3)(+) have been obtained and assigned with the aid of electronic structure calculations. The CCl(3)(+) cation displays a well-resolved (35)Cl/(37)Cl isotopic pattern for the symmetric CCl(3) stretch. The energy-minimized geometries, natural charges, and natural bond orders of the CCl(3)(+), CBr(3)(+), CI(3)(+), and C(OTeF(5))(3)(+) cations and of the presently unknown CF(3)(+) cation have been calculated using HF and MP2 methods have been compared with those of the isoelectronic BX(3) molecules (X = F, Cl, Br, I, and OTeF(5)). The (13)C and (11)B chemical shifts for CX(3)(+) (X = Cl, Br, I) and BX(3) (X = F, Cl, Br, I) were calculated by the GIAO method, and their trends were assessed in terms of paramagnetic contributions and spin-orbit coupling.  相似文献   

6.
Treatment of trans-[PtCl(2)(PPh(2 - n)(C(6)F(5))(n + 1))(2)](n = 0 or 1) with Pb(SC(6)HF(4)-4)(2) yields a mixture of monometallic cis/trans [Pt(SC(6)HF(4)-4)(2)(PPh(2 - n)(C(6)F(5))(n + 1))(2)], thiolate-bridged bimetallic cis/trans [Pt(2)(mu-SC(6)HF(4)-4)(2)(SC(6)HF(4)-4)(2)(PPh(2 - n)(C(6)F(5))(n + 1))(2)] and [Pt(SC(6)HF(4)-4)(2)(1,2-C(6)F(4)(SC(6)HF(4)-4)(PPh(2 - n)(C(6)F(5))(n))].  相似文献   

7.
The new boron dihalides of the type [HC(CMe)(2)(NC(6)F(5))(2)]BX(2) (X = Cl, Br, I) have been prepared and characterized by single-crystal X-ray diffraction. Of the various synthetic approaches explored, the best method in terms of yield and product purity involves the silylhalide elimination reaction of the silylated iminoamine [HC(CMe)(2)(NC(6)F(5))(N{SiMe(3)}C(6)F(5))] with BX(3). Chloroborenium salt [HC(CMe)(2)(NC(6)F(5))(2)BCl][AlCl(4)] was prepared by treatment of [HC(CMe)(2)(NC(6)F(5))(2)]BCl(2) with AlCl(3) in CH(2)Cl(2) solution. This salt was also structurally authenticated and represents the first such data for a beta-diketiminate-supported haloborenium cation.  相似文献   

8.
Halide exchange from the species tBu(3)P(CO(2))B(C(6)F(5))(2)Cl 1 with Me(3)SiOSO(2)CF(3) gave tBu(3)P(CO(2))B(C(6)F(5))(2)(OSO(2)CF(3)) 2. Similarly, Lewis acid exchange occurs in reactions of 1 with Al(C(6)F(5))(3) and [Cp(2)TiMe][B(C(6)F(5))(4)] affording the products, tBu(3)P(CO(2))Al(C(6)F(5))(3)3 and [tBu(3)P(CO(2))TiCp(2)Cl][B(C(6)F(5))(4)] 4.  相似文献   

9.
We report on ab initio calculations at the G2(MP2) level of the structures and Al-N(P) bond complexation energies of the (CH(3))(n)H(3)(-)(n)AlNX(3) and (CH(3))(n)H(3)(-)(n)()AlPX(3) (X = H, F, and Cl; n = 0-3) donor-acceptor complexes. For the (CH(3))(3)AlNX(3) and (CH(3))(3)AlPX(3) complexes, the C(3)(v) symmetry is found to be favored, and for the other complexes the C(s) symmetry is found to be favored. The G2(MP2) calculated complexation energies show for the amine ligands the trend NH(3) > NCl(3) > NF(3). A similar trend PH(3) approximately PCl(3) > PF(3) is predicted for the phosphane ligands. The NBO partitioning scheme shows that there is no correlation between the stability and the charge transfer.  相似文献   

10.
Cs salts of four of the title anions were prepared by fluorination of salts of partly methylated (n = 11, 10) or partly methylated and partly iodinated (n = 6, 5) CB(11)H(12)(-) anions. The CH vertex is acidic, and in the unhindered anion with n = 6 it has been alkylated. Neat Cs(+)[1-H-CB(11)(CF(3))(11)](-) is as treacherously explosive as Cs(+)[CB(11)(CF(3))(12)](-), but no explosions occurred with the salts of the other three anions. BL3YP/6-31G* gas-phase electron detachment energies of the title anions are remarkably high, 5-8 eV. Treated with NiF(3)(+) in anhydrous liquid HF at -60 °C, anions with n = 11 or 10 resist oxidation, whereas anions with n = 6 or 5 are converted to colored EPR-active species, presumably the neutral radicals [HCB(11)(CF(3))(n)F(11-n)](?). These are stable for hours at -60 °C after extraction into cold perfluorohexane or perfluorotri-n-butylamine solutions. On warming to -20 °C in a Teflon or quartz tube, the color and EPR activity disappear, and the original anions are recovered nearly quantitatively, suggesting that the radicals oxidize the solvent.  相似文献   

11.
The second method for the synthesis of cis-[Ru(III)Cl(2)(cyclam)]Cl (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane), with use of cis-Ru(II)Cl(2)(DMSO)(4) (DMSO = dimethyl sulfoxide) as a starting complex, is reported together with the synthesis of [Ru(II)(cyclam)(bpy)](BF(4))(2).H(2)O (2) (bpy = 2,2'-bipyridine) from 1. The syntheses of Ru complexes of tris(2-aminoethyl)amine (tren) are also reported. A reaction between K(3)[Ru(III)(ox)(3)] (ox = oxalate) and tren affords fac-[Ru(III)Cl(3)(trenH)]Cl.(1)/(2)H(2)O (3) (trenH = bis(2-aminoethyl)(2-ammonioethyl)amine = monoprotonated tren) and (H(5)O(2))(2)[K(tren)][Ru(III)Cl(6)] (4) as major products and gives fac-[Ru(III)Cl(ox)(trenH)]Cl.(3)/(2)H(2)O (5) in very low reproducibility. A reaction between 3 and bpy affords [Ru(II)(baia)(bpy)](BF(4))(2) (6) (baia = bis(2-aminoethyl)(iminomethyl)amine), in which tren undergoes a selective dehydrogenation into baia. The crystal structures of 2-6 have been determined by X-ray diffraction, and their structural features are discussed in detail. Crystallographic data are as follows: 2, RuF(8)ON(6)C(20)B(2)H(34), monoclinic, space group P2(1)/c with a = 12.448(3) ?, b = 13.200(7) ?, c = 17.973(4) ?, beta = 104.28(2) degrees, V = 2862(2) ?(3), and Z = 4; 3, RuCl(4)O(0.5)N(4)C(6)H(20), monoclinic, space group P2(1)/a with a = 13.731(2) ?, b = 14.319(4) ?, c = 13.949(2) ?, beta = 90.77(1) degrees, V = 2742(1) ?(3), and Z = 8; 4, RuKCl(6)O(4)N(4)C(6)H(28), trigonal, space group R&thremacr; with a = 10.254(4), c = 35.03(1) ?, V = 3190(2) ?(3), and Z = 6; 5, RuCl(2)O(5.5)N(4)C(8)H(22), triclinic, space group P&onemacr; with a = 10.336(2) ?, b = 14.835(2) ?, c = 10.234(1) ?, alpha = 90.28(1) degrees, beta = 90.99(1) degrees, gamma = 92.07(1) degrees, V = 1567.9(4) ?(3), and Z = 4; 6, RuF(8)N(6)C(16)B(2)H(24), monoclinic, space group P2(1)/c, a = 10.779(2) ?, b = 14.416(3) ?, c = 14.190(2) ?, beta = 93.75(2) degrees, V = 2200.3(7) ?(3), and Z = 4. Compound 4 possesses a very unique layered structure made up of both anionic and cationic slabs, {[K(tren)](2)[Ru(III)Cl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[Ru(III)Cl(6)]}(n)()(n)()(+) (n = infinity), in which both sheets {[K(tren)](2)}(n)()(2)(n)()(+) and {(H(5)O(2))(4)}(n)()(4)(n)()(+) offer cylindrical pores that are occupied with the [Ru(III)Cl(6)](3)(-) anions. The presence of a C=N double bond of baia in 6 is judged from the C-N distance of 1.28(2) ?. It is suggested that the structural restraint enhanced by the attachment of alkylene chelates at the nitrogen donors of amines results in either the mislocation or misdirection of the donors, leading to the elongation of the Ru-N(amine) distances and to the weakening of their trans influence. Such structural strain is also discussed as related to the spectroscopic and electrochemical properties of the cis-[Ru(II)L(4)(bpy)](2+) complexes (L(4) = (NH(3))(4), (ethylenediamine)(2), and cyclam).  相似文献   

12.
The first monomeric antimony alkoxides, Sb(OC(6)H(3)Me(2))(3) (1) and Sb(OEt)(5) x NH(3) (2), have been crystallographically characterized. The former adopts a trigonal pyramidal geometry, while the latter is octahedral about antimony; hydrogen bonding between NH(3) and SbOEt groups in Sb(OEt)(5) small middle dotNH(3) creates a one-dimensional lattice arrangement. Reaction of pyridine with SbCl(5) in EtOH/hexane yields the salt [Hpy(+)](9)[Sb(2)Cl(11)(5)(-)][Cl(-)](4) (3), which has also been crystallographically characterized. Crystallographic data: 1, C(24)H(27)O(3)Sb, a = 10.9080(2), b = 11.9660(2), c = 17.7260(4) A, alpha = 109.740(1) degrees, monoclinic P2(1)/c (unique axis a), Z = 4; 2, C(10)H(28)NO(5)Sb, a = 7.7220(1), b = 19.0700(2), c = 21.6800(3) A, beta = 93.4960(7) degrees, monoclinic P2(1)/c, Z = 8; 3, C(45)H(54)Cl(15)N(9)Sb(2), a = 13.4300(2), b = 14.4180(2), c = 17.4180(3) A, alpha = 82.7650(7), beta = 77.5570(7), gamma = 70.7670(7) degrees, triclinic P1, Z = 2.  相似文献   

13.
The stabilization of the P(CF(3))(2)(-) ion by intermediary coordination to the very weak Lewis acid acetone gives access to single crystals of [18-crown-6-K]P(CF(3))(2). The X-ray single crystal analysis exhibits nearly isolated P(CF(3))(2)(-) ions with an unusually short P-C distance of 184(1) pm, which can be explained by negative hyperconjugation and is also found by quantum chemical hybrid DFT calculation. Coordination of the P(CF(3))(2)(-) ion to pentacarbonyl tungsten has only a minor effect on electronic and geometric properties of the P(CF(3))(2) moiety, while a strong increase in thermal stability of the dissolved species is achieved. The hitherto unknown P(C(6)F(5))(2)(-) ion is stabilized by coordination to pentacarbonyl tungsten and isolated as a stable 18-crown-6 potassium salt, [18-crown-6-K][W[P(C(6)F(5))(2)](CO)(5)], which is fully characterized. The tungstate, [W[P(C(6)F(5))(2)](CO)(5)](-), decomposes slowly in solution, while coordination of the phosphorus atom to a second pentacarbonyl tungsten moiety results in an enhanced thermal stability in solution. The single-crystal X-ray analysis of [18-crown-6-K][[W(CO)(5)](2)[mu-P(C(6)F(5))(2)]].THF exhibits a very tight arrangement of the two C(6)F(5) and two W(CO)(5) groups around the central phosphorus atom. NMR spectroscopic investigations of the [[W(CO)(5)](2)[mu-P(C(6)F(5))(2)]](-) ion exhibit a hindered rotation of both the C(6)F(5) and W(CO)(5) groups in solution.  相似文献   

14.
This work deals with the type and incidence of nonclassical Si--H and H--H interactions in a family of silylhydride complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(X)] (X=SiMe(n)Cl(3-n), H, Me, n=0-3) and [Fe(Cp)(Me(3)P)(SiMe(n)Cl(3-n))(2)H] (n=0-3). DFT calculations complemented by atom-in-molecule analysis and calculations of NMR hydrogen-silicon coupling constants revealed a surprising diversity of nonclassical Si--H and H--H interligand interactions. The compounds [Fe(Cp)(L)(SiMe(n)Cl(3-n))(2)H] (L=CO, PMe(3); n=0-3) exhibit an unusual distortion from the ideal piano-stool geometry in that the silyl ligands are strongly shifted toward the hydride and there is a strong trend towards flattening of the {FeSi(2)H} fragment. Such a distortion leads to short Si--H contacts (range 2.030-2.075 A) and large Mayer bond orders. A novel feature of these extended Si--H interactions is that they are rather insensitive towards the substitution at the silicon atom and the orientation of the silyl ligand relatively the Fe--H bond. NMR spectroscopy and bonding features of the related complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(Me)] (n=0-3) allow for their rationalization as usual eta(2)-Si--H silane sigma-complexes. The series of "dihydride" complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(2)] (n=0-3) is different from the previous two families in that the type of interligand interactions strongly depends on the substitution on silicon. They can be classified either as usual dihydrogen complexes, for example, [Fe(Cp)(OC)(SiMe(2)Cl)(eta(2)-H(2))], or as compounds with nonclassical H--Si interactions, for example, [Fe(Cp)(OC)(H)(2)(SiMe(3))] (16). These nonclassical interligand interactions are characterized by increased negative J(H,Si) (e.g. -27.5 Hz) and increased J(H,H) (e.g. 67.7 Hz).  相似文献   

15.
Addition of 2 equiv of HSiEt(3) to UO(2)((Ar)acnac)(2) ((Ar)acnac = ArNC(Ph)CHC(Ph)O, Ar = 3,5-(t)Bu(2)C(6)H(3)) in the presence of 1 equiv of B(C(6)F(5))(3) results in formation of the U(V) bis(silyloxide) complex [U(OSiEt(3))(2)((Ar)acnac)(2)][HB(C(6)F(5))(3)] (1) in 80% yield. Also produced in the reaction, as a minor product, is U(OSiEt(3))(OB{C(6)F(5)}(3))((Ar)acnac)(2) (2). Interestingly, thermolysis of 1 at 85 °C for 24 h also results in formation of 2, concomitant with production of Et(3)SiH. Addition of 1 equiv of Cp(2)Co to 1 results in formation of U(OSiEt(3))(2)((Ar)acnac)(2) (3) and [Cp(2)Co][HB(C(6)F(5))(3)] (4), which can be isolated in 61% and 71% yields, respectively. Complexes 1-3 have been characterized by X-ray crystallography, while the solution-phase redox properties of 1 have been measured with cyclic voltammetry.  相似文献   

16.
Mechanistic studies on the B(C(6)F(5))(3) catalyzed allylstannation of isomeric substituted benzaldehydes are reported. Confirming a report by Maruoka et al., good (5:1) to excellent (>20:1) selectivities for ortho over para isomers are observed when 1:1 mixtures (X = OMe, Cl, F, OTBS) are allylstannated with C(3)H(5)SnBu(3) in the presence of B(C(6)F(5))(3) (2.5% per CHO). The best selectivities are observed for the anisaldehydes. Multinuclear NMR studies on solutions of B(C(6)F(5))(3) and C(3)H(5)SnBu(3) (1:1 to 1:5) show that the borane abstracts the allyl group from the organotin reagent, forming an adduct (C(6)F(5))(3)B...CH(2)CHCH(2)SnBu(3), 1, or ion pair [(C(6)F(5))(3)BCH(2)CH=CH(2)](-)[Bu(3)SnCH(2)CHCH(2)SnBu(3)](+), 2, depending on the reagent ratio. These compounds are important in the mechanism of Lewis acid catalyzed 1,3-isomerization of substituted allyl stannanes. When allyltin reagent is added to solutions of B(C(6)F(5))(3) and ortho-anisaldehyde (1:5) at -60 degrees C, conversion to the stannylium ion pair [Bu(3)Sn(ortho-anisaldehyde)(2)](+)[o-ArCH(allyl)OB(C(6)F(5))(3)](-), o,o-4, is observed. The structure of this species was confirmed by (1)H, (11)B, (19)F, and (119)Sn NMR spectroscopy and by forming related ion pairs (o-5 and o,o-5) utilizing the [B(C(6)F(5))(4)](-) counteranion via reaction of [Bu(3)Sn](+)[B(C(6)F(5))(4)](-) with aldehyde. The anion in o,o-4 is formed via direct allylation of the ortho-anisaldehyde/B(C(6)F(5))(3) adduct o-3, while the cation arises upon aldehyde ligation of the resulting tributylstannylium ion. The crystal structure of the related derivative ortho-C(6)H(4)(OMe)CHO x SnMe(3)BF(4), 6, showed that the aldehyde binds the tin nucleus only through the carbonyl oxygen. Similar reactions using para-anisaldehyde show that formation of p,p-4 occurs at a much slower rate, again demonstrating the preference for the ortho substituted substrates. For similar experiments using benzophenone, however, formation of the ion pair [Bu(3)Sn(Ph(2)CO)(2)](+)[(C(3)H(5))B(C(6)F(5))(3)](-), 8, was observed, illustrating the differences subtle changes in substrate can bring. Ion pair 8 is formed via the trapping of 1 by the benzophenone substrate. In the presence of excess aldehyde and allyltin reagent, ion pair o,o-4 catalyzes the allylstannation of aldehyde to give the product stannyl ether. Several lines of experimental evidence suggest this is the true catalyst in the system. The chemoselectivity observed thus does not rely on classical chelation control in any way. Rather, we propose that the ortho donor group stabilizes the developing positive charge at the beta carbon of the allyl group and the tin atom during the allylation event. This stabilization renders the ortho substituted substrates kinetically favored toward allylation irrespective of the Lewis acid employed.  相似文献   

17.
A convenient synthesis of (t)Bu(3)SiSH and (t)Bu(3)SiSNa(THF)(x)() led to the exploration of "(t)Bu(3)SiSMX" aggregation. The dimer, [((t)Bu(3)SiS)Fe](2)(mu-SSi(t)Bu(3))(2) (1(2)), was formed from [{(Me(3)Si)(2)N}Fe](2)(mu-N(SiMe(3))(2))(2) and the thiol, and its dissolution in THF generated ((t)Bu(3)SiS)(2)Fe(THF)(2) (1-(THF)(2)). Metathetical procedures with the thiolate yielded aggregate precursors [X(2)Fe](mu-SSi(t)Bu(3))(2)[FeX(THF)]Na(THF)(4) (3-X, X = Cl, Br) and cis-[(THF)IFe](2)(mu-SSi(t)Bu(3))(2) (4). Thermal desolvations of 3-Cl, 3-Br and 4 afforded molecular wheels [Fe(mu-X)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-FeX, X = Cl, Br) and the ellipse [Fe(mu-I)(mu-SSi(t)Bu(3))](14)(C(6)H(6))(n) (6-FeI). Related metathesis and desolvation sequences led to wheels [Co(mu-Cl)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-CoCl) and [Ni(mu-Br)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-NiBr). The nickel wheel disproportionated to give, in part, [((t)Bu(3)SiS)Ni](2)(mu-SSi(t)Bu(3))(2) (7), which was also synthesized via salt metathesis. X-ray structural studies of 1(2) revealed a roughly planar Fe(2)S(4) core, while 1-(THF)(2), 3-Br, and 4 possessed simple distorted tetrahedral and edge-shared tetrahedral structures. X-ray structural studies revealed 5-MX (MX = FeCl, FeBr, CoCl, NiBr) to be wheels based on edge-shared tetrahedra, but while the pseudo-D(6)(d) wheels of 5-FeCl, 5-CoCl, and 5-FeBr pack in a body-centered arrangement, those of pseudo-C(6)(v)() 5-NiBr exhibit hexagonal packing and two distinct trans-annular d(Br...Br). Variable-temperature magnetic susceptibility measurements were conducted on 5-FeCl, 5-CoCl, 5-FeBr, and 6-FeI, and the latter three are best construed as weakly antiferromagnetic, while 5-FeCl exhibited modest ferromagnetic coupling. Features suggesting molecular magnetism are most likely affiliated with phase changes at low temperatures.  相似文献   

18.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

19.
Treatment of Me(2)S·B(C(6)F(5))(n) H(3-n) (n=1 or 2) with ammonia yields the corresponding adducts. H(3)N·B(C(6)F(5))H(2) dimerises in the solid state through N-H···H-B dihydrogen interactions. The adducts can be deprotonated to give lithium amidoboranes Li[NH(2)B(C(6)F(5))(n)H(3-n)]. Reaction of the n=2 reagent with [Cp(2)ZrCl(2)] leads to disubstitution, but [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)] is in equilibrium with the product of β-hydride elimination [Cp(2)Zr(H){NH(2)B(C(6)F(5))(2)H}], which proves to be the major isolated solid. The analogous reaction with [Cp(2)HfCl(2)] gives a mixture of [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)] and the N-H activation product [Cp(2)Hf{NHB(C(6)F(5 )(2)H}]. [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)]·PhMe and [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]·4(thf) exhibit β-B-agostic chelate bonding of one of the two amidoborane ligands in the solid state. The agostic hydride is invariably coordinated to the outside of the metallocene wedge. Exceptionally, [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]?PhMe has a structure in which the two amidoborane ligands adopt an intermediate coordination mode, in which neither is definitively agostic. [Cp(2)Hf{NHB(C(6)F(5))(2)H}] has a formally dianionic imidoborane ligand chelating through an agostic interaction, but the bond-length distribution suggests a contribution from a zwitterionic amidoborane resonance structure. Treatment of the zwitterions [Cp(2)MMe(μ-Me)B(C(6)F(5))(3)] (M=Zr, Hf) with Li[NH(2)B(C(6)F(5))(n)H(3-n)] (n=2) results in [Cp(2) MMe{NH(2)B(C(6)F(5))(2)H}] complexes, for which the spectroscopic data, particularly (1)J(B,H), again suggest β-B-agostic interactions. The reactions proceed similarly for the structurally encumbered [Cp'(2)ZrMe(μ-Me)B(C(6)F(5))(3)] precursor (Cp'=1,3-C(5)H(3)(SiMe(3))(2) , n=1 or 2) to give [Cp'(2)ZrMe{NH(2)B(C(6)F(5))(n)H(3-n)}], both of which have been structurally characterised and show chelating, agostic amidoborane coordination. In contrast, the analogous hafnium chemistry leads to the recovery of [Cp'(2)HfMe(2)] and the formation of Li[HB(C(6)F(5))(3)] through hydride abstraction.  相似文献   

20.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号