首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Visible light-harvesting C(60)-bodipy dyads were devised as universal organic triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion. The antennas in the dyad were used to harvest the excitation energy, and then the singlet excited state of C(60) will be populated via the intramolecular energy transfer from the antenna to C(60) unit. In turn with the intrinsic intersystem crossing (ISC) of the C(60), the triplet excited state of the C(60) will be produced. Thus, without any heavy atoms, the triplet excited states of organic dyads are populated upon photoexcitation. Different from C(60), the dyads show strong absorption of visible light at 515 nm (C-1, ε = 70400 M(-1) cm(-1)) or 590 nm (C-2, ε = 82500 M(-1) cm(-1)). Efficient intramolecular energy transfer from the bodipy moieties to C(60) unit and localization of the triplet excited state on C(60) were confirmed by steady-state and time-resolved spectroscopy as well as DFT calculations. The dyads were used as triplet photosensitizers for TTA upconversion, and an upconversion quantum yield up to 7.0% was observed. We propose that C(60)-organic chromophore dyads can be used as a general molecular structural motif for organic triplet photosensitizers, which can be used for photocatalysis, photodynamic therapy, and TTA upconversions.  相似文献   

2.
The preparation of rhenium(I) tricarbonyl polypyridine complexes that show a strong absorption of visible light and long-lived triplet excited state and the application of these complexes as triplet photosensitizers for triplet-triplet annihilation (TTA) based upconversion are reported. Imidazole-fused phenanthroline was used as the N^N coordination ligand, on which different aryl groups were attached (Phenyl, Re-0; Coumarin, Re-1 and naphthyl, Re-2). Re-1 shows strong absorption of visible light (ε = 60,800 M(-1) cm(-1) at 473 nm). Both Re-1 and Re-2 show long-lived T(1) states (lifetime, τ(T), is up to 86.0 μs and 64.0 μs, respectively). These properties are in contrast to the weak absorption of visible light and short-lived triplet excited states of the normal rhenium(I) tricarbonyl polypyridine complexes, such as Re-0 (ε = 5100 M(-1) cm(-1) at 439 nm, τ(T) = 2.2 μs). The photophysical properties of the complexes were fully studied with steady state and time-resolved absorption and emission spectroscopes, as well as DFT calculations. The intra-ligand triplet excited state is proposed to be responsible for the exceptionally long-lived T(1) states of Re-1 and Re-2. The Re(I) complexes were used as triplet photosensitizers for TTA based upconversion and an upconversion quantum yield up to 17.0% was observed.  相似文献   

3.
Wu W  Guo H  Wu W  Ji S  Zhao J 《Inorganic chemistry》2011,50(22):11446-11460
[C(^)NPt(acac)] (C(^)N = cyclometalating ligand; acac = acetylacetonato) complexes in which the naphthalimide (NI) moiety is directly cyclometalated (NI as the C donor of the C-Pt bond) were synthesized. With 4-pyrazolylnaphthalimide, isomers with five-membered (Pt-2) and six-membered (Pt-3) chelate rings were obtained. With 4-pyridinylnaphthalimide, only the complex with a five-membered chelate ring (Pt-4) was isolated. A model complex with 1-phenylpyrazole as the C(^)N ligand was prepared (Pt-1). Strong absorption of visible light (ε = 21,900 M(-1) cm(-1) at 443 nm for Pt-3) and room temperature (RT) phosphorescence at 630 nm (Pt-2 and Pt-3) or 674 nm (Pt-4) were observed. Long-lived phosphorescences were observed for Pt-2 (τ(P) = 12.8 μs) and Pt-3 (τ(P) = 61.9 μs). Pt-1 is nonphosphorescent at RT in solution because of the acac-localized T(1) excited state [based on density functional theory (DFT) calculations and spin density analysis], but a structured emission band centered at 415 nm was observed at 77 K. Time-resolved transient absorption spectra and spin density analysis indicated a NI-localized intraligand triplet excited state ((3)IL) for complexes Pt-2, Pt-3, and Pt-4. DFT calculations on the transient absorption spectra (T(1) → T(n) transitions, n > 1) also support the (3)IL assignment of the T(1) excited states of Pt-2, Pt-3, and Pt-4. The complexes were used as triplet sensitizers for triplet-triplet-annihilation (TTA) based upconversion, and the results show that Pt-3 is an efficient sensitizer with an upconversion quantum yield of up to 14.1%, despite its low phosphorescence quantum yield of 5.2%. Thus, we propose that the sensitizer molecules at the triplet excited state that are otherwise nonphosphorescent were involved in the TTA upconversion process, indicating that weakly phosphorescent or nonphosphorescent transition-metal complexes can be used as triplet sensitizers for TTA upconversion.  相似文献   

4.
Naphthalenediimide (NDI) derivatives with 2,6- or 2,3,6,7-tetrabromo or amino substituents were prepared. N,N'-dialkyl-2,6-dibromo NDI (compound 2) and N,N'-dialkyl-2,3,6,7-tetrabromo NDI (compound 4) show phosphorescence emission at 610 or 667 nm, respectively. Phosphorescence was never observed for NDI derivatives. Conversely, N,N'-dialkyl-2,6-dibromo-3,7-diamino NDI (compound 5) shows strong absorption at 526 nm and fluorescence at 551 nm, and no phosphorescence was observed. However, nanosecond time-resolved transient difference absorption spectroscopy confirmed that the triplet excited state of 5 was populated upon photoexcitation. 2,3,6,7-Tetraamino NDI (6) shows fluorescence, and no triplet excited state was populated upon excitation. The compounds were used as singlet oxygen ((1)O(2)) photosensitizers for the photooxidation of 1,5-dihydroxylnaphthalene (DHN). We found that 5 is more efficient than the conventional photosensitizer, such as Ir(ppy)(2)(bpy)[PF(6)]. The compounds were also used as organic triplet photosensitizers for triplet-triplet annihilation based upconversions. An upconversion quantum yield up to 18.5% was observed.  相似文献   

5.
Pt(II) Schiff base complexes containing pyrene subunits were prepared using the chemistry-on-complex approach. This is the first time that supramolecular photochemical approach has been used to tune the photophysical properties of Schiff base Pt(II) complexes, such as emission wavelength and lifetimes. The complexes show intense absorption in the visible region (ε = 13100 M(-1) cm(-1) at 534 nm) and red phosphorescence at room temperature. Notably, much longer triplet excited state lifetimes (τ = 21.0 μs) were observed, compared to the model complexes (τ = 4.4 μs). The extension of triplet excited state lifetimes is attributed to the establishment of equilibrium between the metal-to-ligand charge-transfer ((3)MLCT) state (coordination centre localized) and the intraligand ((3)IL) state (pyrene localized), or population of the long-lived (3)IL triplet excited state. These assignments were fully rationalized by nanosecond time-resolved difference absorption spectra, 77 K emission spectra and density functional theory calculations. The complexes were used as triplet sensitizers for triplet-triplet-energy-tranfer (TTET) processes, i.e. luminescent O(2) sensing and triplet-triplet annihilation (TTA) based upconversion. The O(2) sensitivity (Stern-Volmer quenching constant) of the complexes was quantitatively evaluated in polymer films. The results show that the O(2) sensing sensitivity of the pyrene containing complex (K(SV) = 0.04623 Torr(-1)) is 15-fold of the model complex (K(SV) = 0.00313 Torr(-1)). Furthermore, significant TTA upconversion (upconversion quantum yield Φ(UC) = 17.7% and the anti-Stokes shift is 0.77 eV) was observed with pyrene containing complexes being used as triplet sensitizers. Our approach to tune the triplet excited states of Pt(II) Schiff base complexes will be useful for the design of phosphorescent transition metal complexes and their applications in light-harvesting, photovoltaics, luminescent O(2) sensing and upconversion, etc.  相似文献   

6.
The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet–triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn–Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.

Electronic structure theories such as AFQMC can accurately predict the low-lying excited state energetics of organic chromophores involved in triplet–triplet annihilation upconversion. A novel class of benzothiadiazole annihilators is discovered.  相似文献   

7.
We studied four cyclometallated Pt(II) complexes, in which the thiazo-coumarin ligands (Pt-2, Pt-3 and Pt-4) or the phenylthiazo ligand (Pt-1) were directly cycloplatinated. Pt-2 shows intense absorption in visible region but other complexes show blue-shifted absorption. Room temperature phosphorescence was observed for all the complexes, and the emission wavelength is dependent on the size of the π-conjugation, not the intramolecular charge transfer (ICT) feature of the C^N ligands. Pt-2 shows longer phosphorescence lifetime (τ = 20.3 μs) than other complexes (below 2.0 μs). Furthermore, Pt-2 shows phosphorescence quantum yield Φ = 0.37, whereas Pt-3 and Pt-4 show much smaller Φ values (0.03 and 0.01, respectively). DFT/TDDFT calculations indicate (3)IL triplet excited states for the complexes. The complexes were used as for luminescence O(2) sensing and triplet-triplet-annihilation (TTA) based upconversion. Stern-Volmer quenching constant K(SV) = 0.026 Torr(-1) was observed for Pt-2, ca. 89-fold of that of Pt-3. TTA upconversion is achieved with Pt-2 (λ(em) = 400 nm with λ(ex) = 473 nm, anti-Stokes shift is 0.47 eV, excitation power density is at 70 mW cm(-2)). The upconversion quantum yield with Pt-2 as triplet sensitizer is up to 15.4%. The TTET efficiency (K(SV) = 1.33 × 10(5) M(-1), k(q) = 6.57 × 10(9) M(-1) s(-1). DPA as quencher) of Pt-2 is 34-fold of the model complex [Ru(dmb)(3)][PF(6)](2). Our results show that the (3)IL state can be readily accessed by direct cyclometallation of organic fluorophores and this approach will be useful for preparation and applications of transition metal complexes that show intense absorption in visible region and the long-lived emissive (3)IL excited states.  相似文献   

8.
《中国化学快报》2023,34(2):107515
Triplet-triplet annihilation (TTA) upconversion-based materials have potential application in the broad range of research areas, including photocatalysis and life sciences. However, near-infrared (NIR)-to-blue upconverted emission is preferred for most of the practical applications, but developing a NIR-to-blue TTA upconversion system is a challenging task in photochemistry. In this work, a thermally activated delayed fluorescence (TADF) material with intense visible-to-NIR absorption is demonstrated that shows a longer triplet state lifetime (32 µs) and high triplet state energy (ET = 1.55 eV). For the first time, a heavy atom-free NIR (λex > 650 nm) to blue (λem< 460 nm) TTA upconversion system was devised, employing the dimeric borondifluoride curcuminoid TADF material as triplet photosensitizer (PS) and a large anti-Stokes shift (0.88 eV) along with moderate upconversion yield was achieved. Our work provides the solution and guidance for the future development of purely organic heavy atom-free NIR activating TTA upconversion system for a wide array of applications.  相似文献   

9.
Cyclometalated Ir(III) complexes with acetylide ppy and bpy ligands were prepared (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine) in which naphthal (Ir-2) and naphthalimide (NI) were attached onto the ppy (Ir-3) and bpy ligands (Ir-4) through acetylide bonds. [Ir(ppy)(3)] (Ir-1) was also prepared as a model complex. Room-temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir-3 and Ir-4 showed strong absorption in the visible range (ε=39,600 M(-1) cm(-1) at 402?nm and ε=25,100 M(-1) cm(-1) at 404?nm, respectively), long-lived triplet excited states (τ(T)=9.30?μs and 16.45?μs) and room-temperature red emission (λ(em)=640?nm, Φ(p)=1.4?% and λ(em)=627?nm, Φ(p)=0.3?%; cf. Ir-1: ε=16,600 M(-1) cm(-1) at 382?nm, τ(em)=1.16 μs, Φ(p)=72.6?%). Ir-3 was strongly phosphorescent in non-polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir-4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non-polar solvents. Emission of Ir-1 and Ir-2 was not solvent-polarity-dependent. The T(1) excited states of Ir-2, Ir-3, and Ir-4 were identified as mainly intraligand triplet excited states ((3)IL) by their small thermally induced Stokes shifts (ΔE(s)), nanosecond time-resolved transient difference absorption spectroscopy, and spin-density analysis. The complexes were used as triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion and quantum yields of 7.1?% and 14.4?% were observed for Ir-2 and Ir-3, respectively, whereas the upconversion was negligible for Ir-1 and Ir-4. These results will be useful for designing visible-light-harvesting transition-metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

10.
Bodipy derivatives containing excited state intramolecular proton transfer (ESIPT) chromophores 2-(2-hydroxyphenyl) benzothiazole and benzoxazole (HBT and HBO) subunits were prepared (7-10). The compounds show red-shifted UV-vis absorption (530-580 nm; ε up to 50000 M(-1) cm(-1)) and emission compared to both HBT/HBO and Bodipy. The new chromophores show small Stokes shift (45 nm) and high fluorescence quantum yields (Φ(F) up to 36%), which are in stark contrast to HBT and HBO (Stokes shift up to 180 nm and Φ(F) as low as 0.6%). On the basis of steady state and time-resolved absorption spectroscopy, as well as DFT/TDDFT calculations, we propose that 7-9 do not undergo ESIPT upon photoexcitation. Interestingly, nanosecond time-resolved transient absorption spectroscopy demonstrated that Bodipy-localized triplet excited states were populated for 7-10 upon photoexcitation; the lifetimes of the triplet excited states (τ(T)) are up to 195 μs. DFT calculations confirm the transient absorptions are due to the triplet state. Different from the previous report, we demonstrated that population of the triplet excited states is not the result of ESIPT. The compounds were used as organic triplet photosensitizers for photooxidation of 1,5-dihydroxylnaphthalene. One of the compounds is more efficient than the conventional [Ir(ppy)(2)(phen)][PF(6)] triplet photosensitizer. Our result will be useful for design of new Bodipy derivatives, ESIPT compounds, and organic triplet photosensitizers, as well as for applications of these compounds in photovoltaics, photocatalysis and luminescent materials, etc.  相似文献   

11.
Three new anthracene derivatives [2‐chloro‐9,10‐dip‐tolylanthracene (DTACl), 9,10‐dip‐tolylanthracene‐2‐carbonitrile (DTACN), and 9,10‐di(naphthalen‐1‐yl)anthracene‐2‐carbonitrile (DNACN)] were synthesized as triplet acceptors for low‐power upconversion. Their linear absorption, single‐photon‐excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer PdIIoctaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA‐CN at 532 nm with an ultralow excitation power density of 0.5 W cm?2 results in anti‐Stokes blue emission. The maximum upconversion quantum yield (ΦUC=17.4 %) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet–triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet.  相似文献   

12.
A new family of surface‐functionalized CdSe/ZnS core‐shell quantum dots (csQD) has been developed, which work as triplet sensitizers for triplet‐triplet annihilation‐based photon upconversion (TTA‐UC). The surface modification of csQD with acceptor molecules plays a key role in the efficient relay of the excited energy of csQD to emitter molecules in the bulk solution, where the generated emitter triplets undergo triplet‐triplet annihilation that leads to photon upconversion. Interestingly, improved UC properties were achieved with the core‐shell QDs compared with core‐only CdSe QDs (cQD). The threshold excitation intensity, which is defined as the necessary irradiance to achieve efficient TTA process, decreases by more than a factor of four. Furthermore, the total UC quantum yield is enhanced more than 50‐fold. These enhancements should be derived from better optical properties of csQD, in which the non‐radiative surface recombination sites are passivated by the shell layer with wider bandgap.  相似文献   

13.
Reversible emission color switching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC) is achieved by employing an Os complex sensitizer with singlet‐to‐triplet (S‐T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10‐bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near‐infrared‐to‐visible TTA‐UC. The large anti‐Stokes shift is possible by the direct S‐T excitation, which dispenses with the use of a conventional sequence of singlet–singlet absorption and intersystem crossing. The TTA‐UC emission color is successfully switched between green and yellow by thermal stimulation.  相似文献   

14.
A series of directly mesomeso‐linked Pd–porphyrin oligomers (PdDTP‐M, PdDTP‐D, and PdDTP‐T) have been prepared. The absorption region and the light‐harvesting ability of the Pd–porphyrin oligomers are broadened and enhanced by increasing the number of Pd–porphyrin units. Triplet–triplet annihilation upconversion (TTA‐UC) systems were constructed by utilizing the Pd–porphyrin oligomers as the sensitizer and 9,10‐diphenylanthracene (DPA) as the acceptor in deaerated toluene and green‐to‐blue photon upconversion was observed upon excitation with a 532 nm laser. The triplet–triplet annihilation upconversion quantum efficiencies were found to be 6.2 %, 10.5 %, and 1.6 % for the [PdDTP‐M]/DPA, [PdDTP‐D]/DPA, and [PdDTP‐T]/DPA systems, respectively, under an excitation power density of 500 mW cm?2. The photophysical processes of the TTA‐UC systems have been investigated in detail. The higher triplet–triplet annihilation upconversion quantum efficiency observed in the [PdDTP‐D]/DPA system can be rationalized by the enhanced light‐harvesting ability of PdDTP‐D at 532 nm. Under the same experimental conditions, the [PdDTP‐D]/DPA system produces more 3DPA* than the other two TTA‐UC systems, benefiting the triplet–triplet annihilation process. This work provides a useful way to develop efficient TTA‐UC systems with broad spectral response by using Pd–porphyrin oligomers as sensitizers.  相似文献   

15.
For real‐world applications of photon upconversion based on the triplet–triplet annihilation (TTA‐UC), it is imperative to develop solid‐state TTA‐UC systems that work effectively under low excitation power comparable to solar irradiance. As an approach in this direction, aromatic crystals showing high triplet diffusivity are expected to serve as a useful platform. However, donor molecules inevitably tend to segregate from the host acceptor crystals, and this inhomogeneity results in the disappointing performance of crystalline state TTA‐UC. In this work, a series of cast‐film‐forming acceptors was developed, which provide both regular acceptor alignment and soft domains of alkyl chains that accommodate donor molecules without segregation. A typical triplet sensitizer, PtII octaethylporphyrin (PtOEP), was dispersed in these acceptor crystals without aggregation. As a result, efficient triplet energy transfer from the donor to the acceptor and diffusion of triplet excitons among regularly aligned anthracene chromophores occurred. It resulted in TTA‐UC emission at low excitation intensities, comparable to solar irradiance.  相似文献   

16.
Aggregation‐induced photon upconversion (iPUC) based on control of the triplet energy landscape is demonstrated for the first time. When a triplet state of a cyano‐substituted 1,4‐distyrylbenzene derivative is sensitized in solution, no upconverted emission based on triplet–triplet annihilation (TTA) was observed. In stark contrast, crystalline solids obtained by drying the solution revealed clear upconverted emission. Theoretical studies unveiled an underlying switching mechanism: the excited triplets in solution immediately decay back to the ground state through conformational twisting around a C?C bond and photoisomerization, whereas this deactivation path is effectively inhibited in the solid state. The finding of iPUC phenomena highlights the importance of controlling excited energy landscapes in condensed molecular systems.  相似文献   

17.
The sensitized triplet-triplet annihilation (TTA) of 9,10-dimethylanthracene (DMA) upon selective excitation of [Ru(dmb)3]2+ (dmb = 4,4'-dimethyl-2,2'-bipyridine) at 514.5 nm in dimethylformamide (DMF) resulted in upconverted and downconverted DMA excimer photoluminescence. The triplet excited state of [Ru(dmb)3]2+ is efficiently quenched by 11 mM DMA in DMF resulting in photon upconversion but no excimer formation. The bimolecular quenching constant of the dynamic quenching process is 1.4 x 109 M-1 s-1. At 90 mM DMA, both upconversion and downconversion processes are readily observed in aerated DMF solutions. The TTA process was confirmed by the quadratic dependence of the upconverted and downconverted emission emanating from the entire integrated photoluminescence profile (400-800 nm) of DMA measured with respect to incident light power. Time-resolved emission spectra of [Ru(dmb)3]2+ and 90 mM DMA in both aerated and deaerated DMF clearly illustrates the time-delayed nature of both types of singlet-state emission, which interestingly shows similar decay kinetics on the order of 14 mus. The emission quantum yields (Phi) measured using relative actinometry increased with increasing DMA concentrations, reaching a plateau at 3.0 mM DMA (Phi = 4.0%), while at 90 mM DMA, the overall quantum yield diminished to 0.5%. The dominant process occurring at 3.0 mM DMA is upconversion from the singlet excited state of DMA, whereas at 90 mM DMA, both upconversion and excimeric emission are observed in almost equal portions, thereby resulting in an overall broad-band visible light-emission profile.  相似文献   

18.
Metal-to-ligand charge-transfer sensitized upconverted fluorescence in noncovalent triplet energy transfer assemblies is investigated using Ir(ppy)3 as the sensitizer (ppy=2-phenylpyridine) and pyrene or 3,8-di-tert-butylpyrene as the triplet acceptor/annihilator. Upconverted singlet fluorescence from pyrene or 3,8-di-tert-butylpyrene resulting from triplet-triplet annihilation (TTA) is observed following selective excitation of Ir(ppy)3 in deaerated dichloromethane solutions using 450-nm laser pulses. In both systems, the TTA process is confirmed by the near quadratic dependence of the upconverted fluorescence intensity on incident light power, measured by integrating the upconverted delayed fluorescence kinetic traces as a function of incident excitation power. At the relatively high concentrations of pyrene that were utilized, pyrene excimer formation was detected by its characteristic broad emission centered near 470 nm. In essence, selective excitation of Ir(ppy)3 ultimately resulted in the simultaneous sensitization of both singlet pyrene and pyrene excimers, and the latter degrades the energy stored in the pyrene singlet excited state. Furthermore, in the case of di-tert-butylpyrene/Ir(ppy)3, the formation of excimers is successfully blocked because of the presence of the sterically hindering tert-butyl groups. The current work demonstrates that sensitized TTA is indeed accessible to chromophore systems beyond those previously reported, suggesting the generality of the approach.  相似文献   

19.
Upconverted yellow singlet fluorescence from rubrene (5,6,11,12-tetraphenylnapthacene) was generated from selective excitation (lambdaex = 725 nm) of the red light absorbing triplet sensitizer palladium(II) octabutoxyphthalocyanine, PdPc(OBu)8, in vacuum degassed toluene solutions using a Nd:YAG/OPO laser system in concert with gated iCCD detection. The data are consistent with upconversion proceeding from triplet-triplet annihilation (TTA) of rubrene acceptor molecules. The TTA process was confirmed by the quadratic dependence of the upconverted delayed fluorescence intensity with respect to incident light, measured by integrating the corresponding kinetic traces as a function of the incident excitation power. In vacuum degassed toluene solutions, the red-to-yellow upconversion process is stable under continuous long wavelength irradiation and is readily visualized by the naked eye even at modest laser fluence (0.6 mJ/pulse). In aerated solutions, however, selective excitation of the phthalocyanine sensitizer leads to rapid decomposition of rubrene into its corresponding endoperoxide as evidenced by UV-vis (in toluene), 1H NMR (in d6-benzene), and MALDI-TOF mass spectrometry, consistent with the established reactivity of rubrene with singlet dioxygen. The upconversion process in this triplet sensitizer/acceptor-annihilator combination was preliminarily investigated in solid polymer films composed of a 50:50 mixture of an ethyleneoxide/epichlorohydrin copolymer, P(EO/EP). Films that were prepared under an argon atmosphere and maintained under this inert environment successfully achieve the anticipated quadratic incident power dependence, whereas air exposure causes the film to deviate somewhat from this dependence. To the best of our knowledge, the current study represents the first example of photon upconversion using a phthalocyanine triplet sensitizer, furthering the notion that anti-Stokes light-producing sensitized TTA appears to be a general phenomenon as long as proper energy criteria are met.  相似文献   

20.
Room-temperature long-lived near-IR phosphorescence of boron-dipyrromethene (BODIPY) was observed (λ(em) = 770?nm, Φ(P) = 3.5?%, τ(P) = 128.4?μs). Our molecular-design strategy is to attach Pt(II) coordination centers directly onto the BODIPY π-core using acetylide bonds, rather than on the periphery of the BODIPY core, thus maximizing the heavy-atom effect of Pt(II). In this case, the intersystem crossing (ISC) is facilitated and the radiative decay of the T(1) excited state of BODIPY is observed, that is, the phosphorescence of BODIPY. The complex shows strong absorption in the visible range (ε = 53,800 M(-1) cm(-1) at 574?nm), which is rare for Pt(II)-acetylide complexes. The complex is dual emissive with (3)MLCT emission at 660?nm and the (3)IL emission at 770?nm. The T(1) excited state of the complex is mainly localized on the BODIPY moiety (i.e. (3)IL state, as determined by steady-state and time-resolved spectroscopy, 77?K emission spectra, and spin-density analysis). The strong visible-light-harvesting ability and long-lived T(1) excite state of the complex were used for triplet-triplet annihilation based upconversion and an upconversion quantum yield of 5.2?% was observed. The overall upconversion capability (η = ε×Φ(UC)) of this complex is remarkable considering its strong absorption. The model complex, without the BODIPY moiety, gives no upconversion under the same experimental conditions. Our work paves the way for access to transition-metal complexes that show strong absorption of visible light and long-lived (3)IL excited states, which are important for applications in photovoltaics, photocatalysis, and upconversions, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号