首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
A method is described for surface deactivation and modification of fused silica capillary columns with a cyanopropyl-containing reagent. The deactivation procedure involved a dehydrocondensation reaction between a bis(cyanopropyl)methylhydropolysiloxane reagent and surface silanol groups at an optimum temperature of only 250°C. Actual critical surface tension measurements were made using the capillary rise method. Excellent deactivation for acidic and basic compounds at the low ng level, and wettability for nonpolar and polar polysiloxane stationary phases were obtained. A procedure was developed to remove acidic impurities that are present in polar stationary phases.  相似文献   

2.
Summary The method of support surface deactivation by PSD (alkylpolysiloxane degradation) at temperature between 300 and 450°C previously described was used to deactivate both fused silica and alkali glass surfaces of capillary columns. The latter surfaces had to be pretreated before deactivation with aqueous HCl leaching or by the dealkalisation method using flowing HCl gas at 450°C and subsequent rinsing with water for alkali removal. Excellent alkylpolysiloxane columns with regard to tailing and irreversible adsorption of highly polar solutes have been obtained on both fused silica and the pretreated alkali glass. Fused silica does not require pretreatment before deactivation by the PSD-method, however. Good polyethyleneglycol (Carbowax 20 M) columns can also be obtained by coating the two types of surfaces when no deactivation is necessary. Deactivation by the PSD method cannot be applied in this case because polar stationary liquids do not adhere to alkylpolysiloxane deactivated surfaces. Sample capacity problems arising when separating highly polar solutes with non-polar stationary phases have also been investigated.  相似文献   

3.
The gas chromatographic use of flexible thin walled soft glass capillary columns coated with non-polar stationary phases is compared to similar columns made of fused silica glass. With non-polar soft glass columns, the use of surface roughening viagaseous HCI followed by a Carbowax 20 M pretreatment gave adsorptive phenomena, and thermal instability. With very polar soft glass columns where a variety of cyanopropyl silicone phases were coated directly onto the NaCI crystal matrix, adsorptive effects were again prominent and frequent break-down in film stability with time, was also observed. These undesirable effects were due to the presence of metal oxides in the soft glass. Attempts to remove these materials from the thin walled soft glass surface by means of acid leaching produced significant brittleness. This deleterious result was further increased by attempts at high temperature silylation or polysiloxane deactivation. In sharp contrast, the fused silica surface was essentially free of metal oxides and the surface silanol groups are easily neutralized by silylation or polysiloxane deactivation techniques. No brittleness was observed following these procedures. An increasing series of high molecular weight, viscous, polymeric vinyl containing non-polar and highly polar stationary phases have been produced which readily wet the surface of the fused silica and are easily crosslinked in the presence of free radical generators. These columns are essentially free of all the problems noted with flexible thin walled soft glass. When all of the parameters involved in the fabrication of a glass capillary column are assessed, it appears at this time, that the flexible fused silica glass column with cross linked phases approaches the “ideal” capillary column.  相似文献   

4.
Two highly phenylated tetramethyl-p-silphenylene-diphenylsiloxane copolymers were coated on fused silica capillary columns and used as stationary phases in GC. The copolymers offered new insights into the coating process and column preparation due to their physicochemical properties. The fused silica capillary surface had to be pretreated in various ways to achieve a homogeneous film and a well deactivated surface: etching with ammonium bifluoride; leaching with sodium hydroxide and hydrochloric acid; silylation with tetraphenyldimethyldisilazane and triphenylsilylamine. Droplet formation was observed on tetraphenyldimethyldisilazane silylated surfaces leading to capillary columns with low separation efficiency. The topology of inhomogeneous films was investigated by light microscopy, scanning electron microscopy, and Auger electron spectroscopy. It became apparent that the stationary phase did not form droplets but islands, which are connected by a wetting layer according to the Stranski-Krastanov growth mode. Both copolymers are potential stationary phases for high-temperature GC with promising properties. They offer a higher overall polarity than 75% phenyl, 25% methyl-polysiloxanes in combination with increased thermal stability and reduced bleed levels.  相似文献   

5.
In investigations concerned with the phenomenon of molecular chirality, the use of gas chromatography for the enantiomeric analysis of stable, volatile compounds is a technique of steadily growing importance. [1] In the last three years an important breakthrough in gas-chro-matographic separation of enantiomers has been achieved by using alkylated cyclodextrins (α, β, and γ) as chiral stationary phases in high-resolution capillary columns. In academic and commercial practice two different and complementary strategies have been adopted up to now. In the first, alkylated cyclodextrins are diluted with polysiloxanes and coated on glass or fused silica capillary columns. In the second, lipophilic per-n-pentylcyclodextrins and hydrophilic di-n-pentyl- and hydroxyalkylpermethylcyclodextrins are coated directly in the form of liquid phases onto suitably pretreated glass or fused silica surfaces. These techniques permit enantiomer separations not only for polar diols and alcohols, derivatized hydroxycarboxylic acids, amino acids, sugars, and alkyl halides, but also for nonpolar alkenes, cyclic saturated hydrocarbons, and metal π complexes. An important aspect for practical applications is that in many cases the enantiomers can be separated without previous derivatization. Whereas the resolution of racemates of unfunctionalized hydrocarbons is attributed to an enantioselective host–guest inclusion complex, some observations indicate that for polar guest molecules additional enantioselective interactions are also involved. The new chiral stationary phases can be used over a wide range of temperatures (25 to 250°C). The technique described is likely to become widely adopted as a simple, accurate and highly sensitive method for the enantiomeric analysis of chiral compounds that can be vaporized without decomposition. It will also stimulate future research aimed at finding universal cyclodextrin phases and elucidating the mechanisms of enantioselectivity.  相似文献   

6.
Silane-coupling agents, commonly used for fiberglass reinforced plastics (FRP), were applied for deactivation of silanol sites in glass capillary columns prior to coating with mediumpolarity phases such as Carbowax and Superox. The columns, prepared in a two-stage process in the case of glass (acidic leaching and drying, dynamic cold silanization followed by static coating with the phase) or a one stage process in the case of fused silica, gave the best results when deactivation and hence wettability were induced by glycidoxypropyltrimethoxy silane.  相似文献   

7.
We report on an atmospheric pressure plasma (APP) treatment of fused silica and its related surface and near-surface effects. Such treatment was performed in order to improve laser micro-structuring of fused silica by a plasma-induced modification of the glass boundary layer. In this context, an APP jet applying a hydrogenous process gas was used. By the plasma treatment, the transmission of the investigated glass samples was significantly decreased. Further, a decrease in the superficial index of refraction of approx. 3.66 % at a wavelength of 636.7 nm was detected ellipsometrically. By surface energy measurements, a decrease of the surface polarity of 30.23 % was identified. These determined modifications confirm a reduction of silicon dioxide to UV-absorbing silicon suboxide as already reported in previous work. Further, a change in reflexion by maximum 0.26 % was detected which is explained by the superposition of constructive and destructive interferences due to a surface wrinkling. With the aid of atomic force microscopy, an increase of the surface root mean squared roughness by a factor of approx. 19 was determined. It was found that both the surface energy and the strength of the fused silica surface were reduced by the plasma treatment. Even though such treatment led to a clustering of carbonaceous contaminants, a surface-cleaning effect was confirmed by secondary ion mass spectroscopy and energy-dispersive X-ray spectroscopy. The increase in UV-absorption allows enhanced laser ablation results as shown in previous work.  相似文献   

8.
A novel method is described for the preparation of stable glass capillary columns (glass open tubular columns), including the etching and formation of a polymer film on the inner glass capillary surfaces. The approach used here is based on low-temperature plasma etching and polymerization. Under the influence of a field of radio frequency discharge, low pressure gases of fluoric compounds, introduced into the glass capillary tube, generate excited fluorine radicals which etch the inner surface. The plasma of organosilicone monomer in the glass capillary yields a uniform polymerized film on the inner surface. The resultant material functions as a good stationary phase for glass capillary gas chromatography (GC2). The inner surfaces treated with such a plasma, can be studied by means of a scanning electron microscope (SEM). The flexibility of this method permits the use of various stationary phases and surface modification.  相似文献   

9.
The thermal stability of silicones can be improved on replacement of certain of the oxygen atoms in the polymer backbone by phenyl groups. Such a polymer has been synthesized and evaluated for use as stationary phase in fused silica capillary gas chromatography; the polymer was dimethyl substituted and silanol terminated. A selectivity was provided by the phenyl groups in the backbone. For comparative purposes, a silanol-terminated dimethylpolysiloxane has also been evaluated. Both stationary phases gave columns of highest separation efficiency and the supporting fused silica surface was deactivated by the stationary phases on thermal treatment. Further, low column bleeding was observed at the maximum temperature tested, 370°C. The phenyl-containing phase could be immobilized to 60% by heat treatment, but the pure dimethylpolysiloxane was 10% immobilized. The influence on immobilization of factors such as nature of the supporting surface, stationary phase silanol content, reaction temperature and atmosphere in the column during reaction has been studied.  相似文献   

10.
Methylated quartz surfaces are extensively used in colloid science for wettability studies and the control and impact of hydrophobicity in key physicochemical processes. In this study, time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to correlate the surface chemistry of trimethylchlorosilane-methylated quartz surfaces with the contact angle. Models have been developed for the calculation of both advancing and receding contact angles based on measurements of the ToF-SIMS signals for SiC(3)H(9)(+) (TMCS) and Si(+) (quartz). These models enable the contact angle across surfaces and, more importantly, that of individual particles to be determined on a micrometer scale. Distributions of contact angles in large ensembles of particles, therefore, can now be determined. In addition, from the ToF-SIMS analysis, the surface coverage of the methylated species can be quantitatively determined, in line with the Cassie equation. Moreover, advancing and receding contact angle maps can be calculated from ToF-SIMS images, and hence the variation in microscopic hydrophobicity (e.g., at the particle level) can be extracted directly from the images.  相似文献   

11.
12.
Poly-vinyloctylimidazolium ionic liquid polymers with different counter ions (bromide, hexafluorophosphate and bis-trifluoromethanesulfonylimide) were directly coated in capillary fused silica tubing as the stationary phases for gas chromatography. The anion effects on the polymers were examined and discussed. The results suggest that the poly-vinyloctylimidazolium, bis-trifluoromethanesulfonylimide capillary column has the highest thermal stability and separation efficiency. Column-to-column reproducibility was also studied. The results indicate that anions significantly influence ionic liquid polymers which give them potential to extend the range of options for the stationary phases in gas chromatography.  相似文献   

13.
The preparation of surfaces in microfluidic devices that selectively retain proteins may be difficult to implement due to the incompatibility of derivatization methods with microdevice fabrication techniques. This review describes recently reported developments in simple and rapid methods for engineering the surface chemistries of microchannels based on construction of press-fit microdevices. These devices are fabricated by placing a glass fiber on a PDMS film and pressing the film on a silicon wafer or a microscope slide that has been derivatized with octadecyltrichlorosilane (ODS). The film adheres to the slide and forms an elliptically shaped channel around the fiber. The combination of surface wettability of a hydrophilic glass microfiber and the surrounding hydrophobic microchannel surfaces directs a narrow boundary layer of liquid next to the fiber in order to bring the sample in contact with the separation media and results in selective retention of proteins. This phenomenon may be exploited to enable microscale separation applications since there are a wide variety of fibers available with different chemistries. These may be used to rapidly fabricate microchannels that serve as stationary phases for separation at a microscale. The fundamental properties of such devices are discussed.  相似文献   

14.
Novel monomeric and polymeric liquid crystalline compounds were synthesized as stationary phases for gas chromatography (GC) and supercritical fluid chromatography (SFC). Monomeric liquid crystalline compounds were used in packed column gas chromatography for the separation of isomeric aromatic compounds and insect sex pheromones. Liquid crystalline polymers possess long nematic ranges and a uniform coating was easily achieved in glass and fused silica capillaries, which could stand temperatures up to 250°C in GC and pressures of 200 MPa at 160°C in SFC. The columns provide excellent selectivity and resolution for fused ring aromatic compounds such as the isomers anthracene and phenanthrene or triphenylene and chrysene.  相似文献   

15.
An equation was derived to calculate the surface density of trimethylsilyl groups (alphaTMS) on bonded chromatographic stationary phases that have undergone primary as well as secondary ('end-capping') chemical modification. The new equation is an extension of that published by Berendsen-de Galan for calculating primary surface coverage and, likewise, alphaTMS is calculated in terms of the carbon content (% by weight) of the bonded material before and after end-capping, specific surface area of the starting silica and structural information (molecular weight and number of carbon atoms) of the anchored groups. The new equation is valuable when a thorough characterization of bonded stationary phases is desirable and, if used along with the Berendsen-de Galan equation, it affords total ligand coverage information. Application of the new equation to correct for measurable carbon content of the starting support leads to a more accurate expression for surface coverage from primary as well as secondary bonding. The scope and limitations of the new equation are discussed.  相似文献   

16.
Retention gape deactivated with Silicone OV-1701-OH show good chromatographic performance and remarkable stability against water induced stationary phase degradrdation. In an attempt to better understand the findamentals off the deactivation process using silanol terminated polysiloxanes, a fumed silica was deactivated with Silicon OV-1701-OH. In contrast to fused silic capillaries, fumed silica (Aerosil A-200) can be studied by 29Si cross-polarization magic-angle-spinning (CPMAS) NMR, thus serving as a model substrate for fused silica. Retention data from inverse gas chromatography at infinite dilurion and 29Si CP MAS NMR data of five Aerosil phases, differing in residual silanol surface concentration, are correlated with the aim of validating this approach for stationary phase characterization. A comparatively detailed model of the deactivating polymer layer that explains the observed absorption activities is deduced. Surface silanols are shown to play a key role in the polymer layer, the structure of which is of primary importance for the absorption behavior after deactivation. Contrary to common belief, the absolute silanol surface concentration after deativation is only of secondary importance for the overall absorption activity. High silanol surface concentrations enhance degradation of the polysiloxane chains into small cyclic fragments as well as subsequent absorption and immobolization to the silica substrate surface. The mobility of linear polysiloxane chains in the kHz regime (as determined bby NMR cross-polarization dynamics) appears to determine the extent which the residual silanols are accessible for analytes. It is therefore anticipated that there is an optimum silanol surface concentration of fused silica surfaces to be deactivated with silanol terminated polysiloxanes; it should be lazrge enough to adsord polymer fragments, but not large to avoid excessive residual silanol activity.  相似文献   

17.
With surfactant P123 as structure directing reagent, 1, 2-bis (trimethoxysilyl) ethane was hydrolyzed under acid condition. The resulting ethane-bridged silica was coated onto the inner walls of fused silica capillaries and used as the stationary phase for capillary electrochromatography. The bridged ethyl silica provided hydrophobic groups for reversed-phase separation. A comparative coated capillary was fabricated without the use of surfactant in the preparation of the bonded silica. Separation of model neutral compounds was compared between these two kinds of capillaries. Surfactant-assisted organosilica-coated capillaries displayed much superior retention efficiency without obviously decreased electroosmotic flow. The existence of surfactant in the synthesis of the sol results in higher surface areas of the coating. Such ethane-bridged organosilica stationary phases can be used under basic conditions.  相似文献   

18.
Thermal lens spectrometry is used for studying adsorption equilibria in aqueous solutions at the level of nanogram quantities of iron(II) tris-(1,10-phenanthrolinate) as a model system. The kinetics of the sorption of the chelate on silica is studied and adsorption isotherms are built. Thermal lensing is used as a method for direct determination of the chelate concentration adsorbed on a quartz surface. The detected amount is 4.1×10−15 mol at the area irradiated by the excitation beam. The adsorption of iron(II) tris-(1,10-phenanthrolinate) on laboratory glassware at the nanogram level is characterised by measuring the residual concentration of the sorbate in solution. A procedure for handling and cleaning the laboratory glassware for determining nanogram amounts of iron in aqueous solutions is proposed. The sensitivity of thermal lensing both in measuring adsorption on silica and glass and quartz surfaces is 100-fold higher than diffuse-reflectance measurements under the same conditions.  相似文献   

19.
Supercritical fluid chromatography was utilized in combination with the Abraham model of linear solvation energy relationship to characterize 11 different HPLC stationary phases. System constants were determined at one supercritical fluid chromatography condition for each stationary phase. The results indicate that several types of silica columns, including type B silica, type C silica, and fused core silica, are very similar in their retention behavior. Several aromatic stationary phases were characterized and it was found that, in contrast to the other phases studied, all of the aromatic stationary phases had positive contributions from the dispersion/cavity (v) term of the linear solvation energy relationship. Several aliphatic phases were characterized and there were several linear solvation energy relationship constants that differentiated the phases from each other, mainly the polar terms (dipolarity and hydrogen bonding). One stationary phase, a fused core pentafluorophenyl (PFP) phase, had very poor regression quality. The column volume of this phase was lower than the others in the study, which may have had some impact on the results of the regression.  相似文献   

20.
A commercially available silanol terminated silicone stationary phase, OV-61-OH (33% phenyl), and two phenyl-substituted siloxane/silarylene copolymers, Sila 3 (27% phenyl) and 4 (35% phenyl), have been evaluated for use as stationary phases in fused silica capillary columns for gas chromatography. Ulterations in column adsorptive activity, separation efficiency, stationary phase film thickness and selectivity after column conditioning for 50 h at 370°C have been studied. A high thermal stability was experienced with the stationary phases tested here. For OV-61-OH, the best thermal stability was obtained when coated on untreated fused silica, which illustrates the importance of grafting reactions here. The heat treatment resulted in some deactivation of adsorptive sites in the column. A higher degree of column deactivation was achieved when surface silylation was performed prior to coating. High thermal stability was achieved with Sila 3 when coated on such surfaces. Sila 3 would thus be preferred in cases when high thermal stability in combination with high dsorptive inertness is desired. Sila 4 showed low column bleeding at 370 °C, but prolonged heating at this temperature resulted in the broadening of n-alkane peaks when eluted at 90 °C. This indicates that excessive crosslinking has taken place during the heat treatment and the minimum allowable column operation temperature is thereby increased to ca. 120 °C. The separation of aza-arenes and of triglycerides are shown as applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号