首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyampholytes containing amino groups at various distances from the backbone have been prepared through the reaction of the maleic anhydride-1-vinyl-2-pyrrolidone alternating copolymer with 1,2-diaminoethane, 1,4-diaminobutane, and 1,6-diaminohexane. The acidic properties of the new polymers and their activity in reaction with silicic acid modeling the biosilicification processes under the action of natural polyampholytes have been studied. It has been established that, in a weakly acidic region (pH 5.5-6), the synthetic polymers do not catalyze the condensation of silicic acid but are involved in reaction with primary silica particles. The efficiency of this interaction increases with approach of the amino group to the backbone because of a higher probability of formation of the tertiary complex with participation of carboxyl, amine, and silanol groups.  相似文献   

2.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   

3.
A novel series of benzimidazole‐containing sulfonated poly(arylene sulfones)s with controllable amount of basic 2,6‐bis(benzimidazol‐2‐yl)pyridine (BIP) and sulfonic acid groups have been prepared by the copolycondensation of a new BIP‐containing arylene difluoride monomer (DFSBIP) with a sulfonated arylene difluoride (DSDFS) and 4,4′‐biphenol (BP). All the resulting polymers have high molecular weights, good thermal stability, and can form uniform and tough membranes by simple solution casting. Because of the strong acid–base interaction between BIP and sulfonic acid groups, ionic crosslinking networks forms that resulted in polymer membranes with good dimensional stability in water even at high temperature (e.g., 100 °C). The ion exchange capacity (IEC) of the polymer membranes was investigated through a new simple pH‐determination method. A comparison between the experimental IEC values with the calculated ones based on the polymer structures indicated that each BIP unit interacted with one sulfonic acid group. Thus, by controlling the relative content of BIP units and sulfonate groups in the polymers, the intra‐ and intermolecular acid–base interactions could be readily optimized so as to achieve polymers with high IEC values, high proton conductivities as well as low swelling ratios, demonstrating good potential for proton exchange membrane applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1920–1929, 2009  相似文献   

4.
Polymers tagged with a local pH reporter were synthesized. A methacrylate-type monomer containing a merocyanine dye residue as a reporter dye—1-(2-methacryloyloxyethyl)-4-(2-(4-hydroxyphenyl)-ethenyl)quinolinium bromide—was synthesized. Its homopolymer and copolymers with sodium 2-acrylamido-2-methylpropanesulfonate were prepared by free radical polymerization. These polymers showed a characteristic color change in aqueous solutions from yellow to red with increasing pH from acidic to basic conditions according to the acid-base equilibria of the merocyanine dye residues. Since the electrostatic potential and polarity of media have a strong effect on the acid–base equilibria, the pendant merocyanine residues are expected to serve as a reporter to provide information on the local environments around the polymer chain at which the dye molecules are incorporated.  相似文献   

5.
This work demonstrates the successful incorporation of functionalized single‐walled carbon nanotubes (f‐SWCNTs) into the phenylboronate‐diol crosslinked polymer gel to create a hybrid system with reversible sol–gel transition. The phenylboronic acid‐containing and diol‐containing polymers were first separately prepared by the reversible addition–fragmentation chain transfer polymerization. Covalent functionalization of single‐walled carbon nanotubes (SWCNTs) with an azide‐derivatized, diol‐containing polymer was then accomplished by a nitrene addition reaction. Subsequently, the hybrid gels were prepared by crosslinking the mixture of f‐SWCNTs and diol‐containing polymer with the phenylboronic acid‐containing polymer. The hybrid gel has been characterized by scanning electron microscopy (SEM) and rheological analysis. The SEM measurement demonstrated a homogeneous dispersion of f‐SWCNTs within the gel matrices. Rheological experiments also demonstrated that the hybrid gel exhibited storage moduli significantly higher than those of the native gel obtained from the phenylboronic acid‐containing and diol‐containing polymers. The hybrid gel can be switched into their starting polymer (f‐SWCNTs) solutions by adjusting the pH of the system. Moreover, the hybrid gel revealed a self‐healing property that occurred autonomously without any outside intervention. By employing this dynamic character, it is possible to regenerate the used gel, and thus, it has the potential to perform in a range of dynamic or bioresponsive applications Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
As a model of serine hydrolase, the condensation polymers of salicylic acid, formaldehyde and methyl amine, n-propyl amine, n-hexyl amine or n-lauryl amine were prepared by polycondensation catalyzed by sulfuric acid. It was confirmed by potentiometric titration and infrared spectrum that the polymers containing tertiary amino group possess the structure which resembles the internal salt of amino acid in weak basic and weak acidic solution:  相似文献   

7.
Low-density polyethylene was modified by the inclusion of phosphonate ester pendent groups by using an oxidative chlorophosphonylation reaction followed by esterification of the polyethylene poly(phosphonyl chloride) with an alcohol. Two different types of phosphonate esters were prepared: dimethyl phosphonate from the reaction with methanol and a phosphonate graft copolymer from the reaction with hydroxy-terminated poly(ethylene oxide) (PEO). For the latter, oligomers with molecular weights of 350 and 750 were used. For each type of phosphonate, a series of polymers were prepared with pendent group concentrations ranging from 0 to 9.1 substituents per 100 carbon atoms. The modified polymers were characterized by infrared spectroscopy, differential scanning calorimetry, and by measurement of the tensile modulus. Infrared spectroscopy proved to be useful for determining if the polymer modification reaction resulted in entirely phosphonate ester pendent group substitutions or if unesterified phosphonic acid groups were also present. The polymers prepared in this investigation exhibited no infrared absorbances arising from phosphonic acid groups. The presence of phosphonate ester groups resulted in a decrease of crystallinity with increasing phosphonate concentration and with the exception of the polymers containing 9.1 PEO–phosphonate grafts per 100 carbon atoms, the effect of phosphonylation on the melting temperature of the polymers was consistent with Flory's theory for the melting point depression of random copolymers. The tensile modulus measured from a constant uniaxial elongation experiment decreased with increasing phosphonylation. The behavior of all three phosphonate series was identical and could be attributed to the effect of decreasing polymer crystallinity.  相似文献   

8.
A series of polyisophthalamides containing pendent oxybenzoyl groups were prepared from 5-oxybenzoyl-isophthaloyl chloride and aromatic diamines. The analogous unsubstituted polyisophthalamides were also prepared in order to compare the two series and to determine the effect of oxybenzoyl pendent groups on the properties of aromatic polyamides. The modified polymers exhibited better solubility than, and approximately the same glass transition temperatures (in the range 260–290°C) as, the parent unsubstituted polymers. The mechanical strength of polymer films was affected only to a small extent by the presence of side groups, but the thermal resistance was negatively affected, with the result that polyisophthalamides with oxybenzoyl pendent groups began to decompose at about 360°C (TGA), 60–100°C lower than the unsubstituted polyisophthalamides. By means of an appropriate thermal treatment, crosslinking of the modified polymers was achieved and their thermal resistance significantly enhanced.  相似文献   

9.
The modification of poly(4-vinylpyridine) with ω-bromocarboxylic acids and alkyl bromides yields three types of polyampholytes: polyampholytes containing both cationic and anionic groups in each monomer unit (polybetaines), polyampholytes containing betaine and cationic units, and polyampholytes containing betaine units and side cetyl radicals. Their complex formation with liposomes formed from zwitterionic (electroneutral) phosphatidylcholine and anionic diphosphatidylglycerol (cardiolipin) is investigated. The method for fixation of polymers on the liposomal membrane and the stability of the formed complexes are determined by the chemical structure of macromolecules. For the most part, polyelectrolytes are electrostatically adsorbed on the membrane and are fully removed from it with an increase in the salt concentration in the surrounding solution. An exception is the polybetaine obtained through the modification of poly(4-vinylpyridine) with ω-bromobutyric acid, which irreversibly binds to liposomes probably owing to the incorporation of macromolecular fragments into the hydrophobic part of the lipid bilayer. The insertion of side cetyl radicals into polybetaine molecules stabilizes their complexes with liposomes in the presence of salts. The cytotoxicity of the synthesized polyampholytes is one to two orders of magnitude lower than that of a cationic polymer with the same degree of polymerization.  相似文献   

10.
Chiral linear polymers were prepared by the thermal polymerization of N-acryloyl-L-valine and N-acryloyl-L-alanine derivatives using 3-mercaptopropionic acid (3-MPA) as a radical transfer agent. C-Terminal groups of the derivatives were methyl and tert-butyl esters later removed, and N-methylamide moieties. The N'-methylamide derivative of N-acryloyl-L-valine was copolymerized with methyl ester at a molar mixing ratio of 1:1. The ester groups were removed to provide anionic linear polymers terminated with carboxylic acid of the amino acid residue. The polymers are thus shown to function as pesudostationary phases that separate enantiomeric solutes in electrokinetic capillary chromatography (EKC). Racemic 3,5-dinitrobenzoylamino isopropyl esters were separated with the polymer derived from N-acryloyl-L-valine esters and with the copolymer from N-acryloyl-L-valine methyl ester and N-acryloyl-L-valine N'-methylamide at pH 7.0. These separations could not be observed at pH 9.0 in migrating solutions containing anionic linear polymers. This pH dependence can be discussed from the standpoint of the microscopic hydrophobicity of the polymers, as assessed from the fluorescence of pyrene adsorbed onto the polymers in water.  相似文献   

11.
利用A2/B3单体通过重氮偶合反应制备了超支化偶氮聚合物.利用核磁共振、红外光谱、紫外光谱和DSC热分析手段表征了聚合物的结构、光谱性能和玻璃化转变温度.合成的超支化偶氮聚合物具有很好的光响应性能,用488nm Ar+激光对超支化偶氮聚合物薄膜进行光加工,得到了规则的表面起伏光栅.  相似文献   

12.
Wholly aromatic ordered copolyamides of unusually high thermal stability were prepared by the condensation of aromatic diacid chlorides with symmetrical diamines containing preformed aromatic amide units in an ordered arrangement. The preservation of order in the condensation step was assured by using interfacial or solution polymerization techniques at temperatures below 50°C. Each polymer contains units derived from aminobenzoic acids, arylene diamines, and arylene diacids. By use of para- and meta- phenylene units, eight different polymers are possible; all were prepared. Differential thermal analyses and thermogravimetric analyses showed these polymers to have melting points or decomposition temperatures in a range from 410°C. for the all-meta polymer to 555°C. for the all-para one. Substitution of the internal N-hydrogens of the diamines with methyl groups or phenyl groups leads to additional ordered copolymers. Several were prepared, but their melting points were much lower than those of the parent polymers limiting their usefulness in high temperature applications. Tough pliable films were prepared from all eight unsubstituted polymers, and crystalline fibers with tenacities of ca. 6 g./den. were prepared from three of the polymers. The properties of the fibers were retained to a high degree even when determined at temperatures up to 400°C. Fibers aged at 300°C. for extended periods of time showed remarkable retention of fiber properties.  相似文献   

13.
New pH-sensitive polyaspartamide derivatives were synthesized by grafting 1-(3-aminopropyl)imidazole and/or O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) 5000 on polysuccinimide for application in intracellular drug delivery systems. The DS of 1-(3-aminopropyl)imidazole was adjusted by the feed molar ratio, and the structure of the prepared polymer was confirmed using FT-IR and 1H NMR spectroscopy. Their pH-sensitive properties were characterized by light transmittance measurements, and the particle size and its distribution were investigated by dynamic light scattering measurements at varying pH values. The pH-sensitive phase transition was clearly observed in polymer solutions with a high substitution of 1-(3-aminopropyl)imidazole. The prepared polymers showed a high buffering capacity between pH 5 and 7, and this increased with the DS of 1-(3-aminopropyl)imidazole. The pH dependence of the aggregation and de-aggregation behavior was examined using a fluorescence spectrometer. For MPEG/imidazole-g-polyaspartamides with a DS of 1-(3-aminopropyl)imidazole over 82%, self aggregates associated with the hydrophobic interactions of the unprotonated imidazole groups were observed at pH values above 7, and their mean size was over 200 nm, while the aggregates of polymers were dissociated at pH values below 7 by the protonation of imidazole groups. These pH-sensitive polyaspartamide derivatives are potential basic candidates for intracellular drug delivery carriers triggered by small pH changes.  相似文献   

14.
In this work, cross‐linked poly(1‐vinylimidazole) (PVIm) and poly(1‐vinylimidazole‐co‐acrylic acid) [poly(VIm‐co‐AA)] polyampholytes microgel were synthesized by precipitation polymerization in supercritical carbon dioxide at 14 and 20 MPa. The obtained products were characterized by Fourier transform infrared spectroscopy and Energy‐dispersive X‐ray spectroscopy. The results indicate that the functional monomers including 1‐VIm and AA were cross‐linked in polymers successfully. Aggregate particles with diameters of approximately 200 nm were observed by scanning electron microscopy and particle size distribution. Surface area analysis showed that the surface area of microgel prepared at a pressure of 14 MPa are 40.28 m2/g. The swelling behavior of polyampholytes microgel was studied. The cross‐linking degrees of PVIm and copolymers can reach 92.6% and 98.1%. The effect of pH values of solution, contact time, adsorbent dosage, initial Cr(VI) concentration on adsorption capacity were also investigated. The results revealed that cross‐linked polymer has a high adsorption capacity of 306.0 mg/g for Cr(VI) in 130 mg/l solution at pH 2 and cross‐linker ratio of 27.3%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Alternating polyampholytes (MA-VA) containing two acidic groups and one basic group were prepared by the copolymerization of maleic anhydride (M1) and N-vinylsuccinimide (M2) at 60°C with AIBN as the initiator, followed by acid hydrolysis with 1N hydrochloric acid at 140°C for 24 hr. The monomer reactivity ratios r1 and r2 are 0.025 and 0.06, respectively. The structure of polymers was discussed on the basis of the data of their elementary, infrared (IR), and thermal analyses and the binding ability of heavy metal ion. Polyampholytes were soluble in strong acidic and basic media but were precipitated in the pH range 3–4. An isoelectric point at pH 3 was determined by potentiometric titration and the turbidimetric method. By thermal treatment above 205°C the polyampholyte turned quantitatively into a cyclized lactam. This suggests that the polyampholyte MA–VA has an intramolecular hydrogen bond between the amino and γ-carboxyl groups. The binding of Cu2+ and Hg2+ by the polyelectrolyte was evaluated by equilibrium dialysis.  相似文献   

16.
Rigid aromatic polyesters containing alkoxy or phenyl-substituted oligophenyls were prepared. Soluble polymers were obtained also in cases where phenyl-substituted quinquephenyl diols were combined with asymmetric phenyl-substituted terephthalic acid. The synthesized polyesters were characterized by viscosimetry, gel permeation chromatography, thermal analysis, and dynamic mechanical analysis. The temperature dependence of the intrinsic viscosity was sensitive to the type of side groups. Thermogravimetry has shown that polyesters with aromatic substituents were stable up to 380–400°C. The glass transition temperatures of the polyesters with aromatic side groups were in the 220–260°C range as determined by DSC. Polyesters with hexyloxy side chains show crystallinity. Dynamic mechanical analysis showed that in the cases where aromatic substituents were used to increase solubility, the obtained polymers have very useful mechanical properties at high temperatures. The polymer having the quinquephenyl unit in the main chain has an almost constant modulus up to 340°C. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Several polybenzimidazoles containing cardo groups were prepared: A cardodicarboxylic acid, 9,9-bis(4-carboxyphenyl)fluorene, and two cardotetramines, 9,9-bis(3,4-diaminophenyl)fluorene and 9,9-bis(3,4-diaminophenyl)10-anthrone. The cardodicarboxylic acid was condensed with aromatic tetramines and the cardotetramines were condensed with aromatic dicarboxylic acids. Prior to polymer synthesis two model compounds, 9,9-bis[4,(2-benzimidazolyl)phenyl]fluorene and 2,2′-diphenyl-5,5′-(9,9-fluorenediyl)-bibenzimidazole were prepared and characterized by spectral methods. The polymers were obtained in 60–70% yield and showed reduced viscosity in the range of 0.7–1.1 dL/g. They were soluble in dimethyl formamide (DMF) and chlorinated solvents like tetrachlorethane. The thermal stabilities of these cardopolymers were superior to noncardopoly-benzimidazoles.  相似文献   

18.
A high-torque rheometer was used to facilitate the polycondensation of 4-[5-amino-6-hydroxybenzoxazol-2-yl]benzoic acid (ABA) with trimesic acid and 1,3,5,7-tetrakis(4-carboxylatophenyl)adamantane to yield two- and three-dimensional benzobisoxazole polymers, respectively. Although the resultant polymer dopes exhibited improved homogeneity compared to polymer dopes previously prepared in glassware, improved polymer solution viscosities were not achieved. Fibers spun from the two- and three-dimensional polymers did not show a significant increase in compressive strength compared to fibers of the linear or one-dimensional benzobisoxazole polymer derived from the homopolymerization of ABA. Morphological studies of the polymer fibers and films by wide-angle X-ray scattering and scanning electron microscopy strongly indicated more lateral disorder and a more isotropic character for the three-dimensional structures compared to the one-dimensional structures. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3457–3466, 1997  相似文献   

19.
We report on the synthesis of poly[(sodium sulfamate/carboxylate) isoprene‐b‐2‐vinyl pyridine] block polyampholytes (SCPI‐P2VP), utilizing anionic polymerization and post polymerization functionalization reactions. The precursor poly(isoprene‐b‐(2‐vinylpyridine)) diblock copolymers (PI‐P2VP), containing a polyisoprene (PI) block with high 1,4 microstructure, were prepared by anionic polymerization high vacuum techniques, in two steps, involving change of the polymerization solvent. Subsequent functionalization of the PI block with chlorosulfonyl isocyanate, introduced sulfamate and carboxylate groups in the polymer chains and produced the desired block polyampholytes. The successful synthesis of the polyampolytes was corroborated by elemental analysis and IR spectroscopy measurements. The self‐assembly behaviour of the aforementioned polyampholytes was studied in aqueous solutions as a function of pH, by aid of dynamic and static light scattering, zeta potential, fluorescence spectroscopy and atomic force microscopy. Experimental results indicate that the block polyampholytes form micellar structures with P2VP cores and SCPI coronas at pH > 6, whereas more compact nanoparticles are formed at pH < 4 from the complexation of positively charged P2VP and SCPI, stabilized by excess negative charges of uncomplexed SCI segments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
New metathesis and addition polymers containing Si–O–C groups were synthesized from 3-tri(n-propoxy) silyltricyclo[4.2.1.02.5]non-7-ene. It was shown for the first time that metathesis polymer was more permeable than the addition polymer. The prepared polymers showed high selectivity in the butane/methane separation controlled by solubility; therefore, they are promising for membrane separation of hydrocarbon mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号