首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ring transformation of 6-methyl-3,4-dihydro-2H-1,3-oxazine-2,4-dione (Ia) and its N-sub-stituted derivatives, such as 3-methyl (Ib), 3-ethyl (Ic), and 3-benzyl (Id) derivatives is described. Reaction of Ia with hydrazine hydrate gave 1-amino-6-methyluracil (II), while Id reacted with hydrazine hydrate to give 3-hydroxy-5-methylpyrazole (III). Reaction of Ia,b,d with ethyl acetoacetate in ethanol in the presence of sodium ethoxide afforded ethyl 3-acetyl-6-hydroxy-4-methyl-2(1H) pyridone-5-carboxylate derivatives (IVa,b,d). On the other hand, reaction of Ib,c,d with ethyl acetoacetate in tetrahydrofuran in the presence of sodium hydride did not give IV, but gave 3-acetyl-1-alkyl-5-(N-alkylcarbamoyl)-6-hydroxy4-methyl-2(1H) pyridone (VIb,c,d). Mechanisms for the formation of compounds IV and VI are discussed.  相似文献   

2.
Low resolution mass spectra and high resolution data for selected important peaks are presented and discussed for the following compounds: [(5-acetyl-2-furyl)-(2′-furyl)]methane (I), [(5-acetyl-2-furyl)-(5′-methyl-2′-furyl)]methane (II), [(5-formyl-2-furyl)-(2′-furyl)]methane (III) and [(5-formyl-2-furyl)-(5′-methyl-2′-furyl)]methane (IV). The fragmentation of II has been clarified by examining the mass spectrum of its d3-acetyl analog; the fragmentation of III and IV by examining the spectra of their carbonyl 13C-labeled analogs.  相似文献   

3.
3-Acetyltropolone ( 1 ) reacted with bromine, iodine, and nitric acid to afford respectively 3-acetyl-5,7-di-bromotropolone ( 2 ), 3-acetyl-7-iodotropolone ( 3 ), and 3-acetyl-5-nitro- ( 4 ) and 3-acetyl-5,7-dinitrotropolone ( 5 ). Azo-coupling reactions of 1 gave 3-acetyl-5-arylazotropolones 7a-f. The Schmidt reactions of 2 and 3 gave respectively 5,7-dibromo- ( 9 ) and 7-iodo-2-methyl-8H-cyclohept[d]oxazol-8-one ( 10 ), while 4 gave 3-acetamido-5-nitrotropolone ( 11 ). Compounds 2 and 4 reacted with hydroxylamine to give 3-methyl-8H-cyclohept[d]isoxazol-8-ones 12 and 13. The reactions of 2 , 3 , and 4 with hydrazine gave 3-methyl-1,8-dihydrocycloheptapyrazol-8-ones 15 , 16 , and 17.  相似文献   

4.
The reactions of 1,1-diphenylethene, 1,1-bis(4-chlorophenyl)ethene, 1,1-bis(4-methylphenyl)ethene, and 1,1-bis(4-methoxyphenyl)ethene with 3,5-diacetyl-2,6-heptanedione in the presence of manganese(III) acetate in acetic acid at 80° yielded 4,6-diacetyl-8,8-diaryl-1,3-dimethyl-2,9-dioxabicyclo[4.3.0]non-3-enes (41-48%), 5-acetyl-2,2-diaryl-6-methyl-2,3-dihydrobenzo[b]furans (20–21%), 3-acetyl-5,5-diaryl-2-methyl-4,5-dihydrofurans (5–10%), and benzophenones (3–7%). Similarly, the reactions of 1,1-diarylethenes with dimethyl 2,4-diacetyl-1,5-pentanedioate or diethyl 2,4-diacetyl-1,5-pentanedioate gave the corresponding 4,6-bis(alkoxycarbonyl)-8,8-diaryl-1,3-dimethyl-2,9-dioxabicyclo[4.3.0]non-3-enes in moderate yields.  相似文献   

5.
The electrochemical oxidation of 2,5-diphenyl-3-acetylpyrrole (I) is described. The cyclic derivative 1,6a-dihydro-2,5,6a-triphenyl-3,4-diacetylbenzo[g]pyrrolo[3,2-e]indole (II) was obtained in very good yield. However, when water was present in the reaction medium, a different derivative, 4-acetyl-2-hydroxy-2,5-diphenyl-3-(4′-acetyl-2′,5′-diphenyl-3′-yl)-2H-pyrrole (III) , was obtained as the main product. 2,2′,5,5′-Tetraphenyl-4,4′-diacetyl-3,3′-dipyrryl (IV) , a potentially useful intermediate for the synthesis of condensed pyrroles, was synthesized by zinc reduction of III.  相似文献   

6.
Reaction of 3-acetyl-4,6-dimethyl-2-(1H)pyridone ( 9a ) with phosphoryl chloride gives 2-chloro-3-ethynyl-4,6-dimethylpyridine ( 10a ). 3-Acetyl-4-hydroxy-6-methyl-2(1H)pyridone (14a) and 3-acetyl-2,6-dimethyl-4-(1H)-pyridone (21) undergoes similar reaction to give the corresponding ethynyl (16 and 23) and chlorovinyl (15 and 22) pyridines, respectively. The chlorination of 3-acetylpyridine and pyrimidine derivatives is further described.  相似文献   

7.
Methylglyoxalyl chloride arylhydrazones (III) react with an ethanolic solution of thiourea to give 2-amino-4-methyl-5-arylazothiazoles (XII) instead of the expected 2-acetyl-4-aryl-5-imino-Δ2-1,3,4-thiadiazolines (V) which were obtained from III and potassium thiocyanate. 3-Thiocyanato-2,4-pentanedione (IV) coupled with diazotized anilines to give V. The postulated routes to formation of V and XII from III are given. Nitrosation of V gave the corresponding N-nitroso derivatives (VI) which decomposed upon refluxing in dry xylene to give 2,4-disubstituted-Δ2-1,3,4-thiadiazolin-5-ones (VII). Boiling of either V or VI with hydrochloric acid gave the hydrochloride salt (VIII). The thiadiazolines V gave the respective N-acyl derivatives (IX) and (X) with acetic anhydride and benzoyl chloride in pyridine.  相似文献   

8.
The reaction of 3-acetyltropolone ( 1 ) with hydroxylamine under the acidic condition gave 3-methyl-8H-cyclohept[d]isoxazol-8-one ( 4 ) and its oxime ( 5 ), and under the neutral condition gave 4 and 3-acetyltropolone oxime ( 6 ). The reaction of 3-acetyl-2-methoxytropone ( 2a ) with hydroxylamine under the acidic condition gave 4, 5 , and 4-methyl-1H-2,3-benzoxazin-1-one ( 7 ), and under the neutral condition gave 4, 7 , 3-methyl-8H-cyclohept[c]isoxazol-8-one ( 8 ), and its oxime ( 9 ). The reaction of 7-acetyl-2-methoxytropone ( 2b ) with hydroxylamine under the acidic condition gave 4 and 5 , and under the neutral condition gave 5, 7 , and 9 .  相似文献   

9.
5-Benzoyl-4-methylpyrimidines 4a,b and 5-acetyl-4-phenylpyrimidines 5a,b reacted with hydrazines in alcoholic acidic medium to give respectively 4-acetyl-3-phenylpyrazoles 7, 9 and 10 and 4-benzoyl-3-methylpyrazoles 6, 8 and 11 . In the reaction with phenylhydrazine, 5-benzoyl-4-methyl-2-methylthiopyrimidine ( 4a ) led exclusively to 4-acetyl-1,3-diphenylpyrazole ( 10 ) as 5-acetyl4-phenyl-2-methylthiopyrimidine ( 5a ) led to 4-benzoyl-3-methyl-1-phenylpyrazole ( 11 ) via the initial formation of phenylhydrazones of pyrimidines 4a and 5a . However, 5-benzoyl-4-methyl-2-phenylpyrimidine ( 4b ) and 5-acetyl-2,4-diphenylpyrimidine ( 5b ) reacted with phenylhydrazine to afford, each of them, a mixture of two isomeric pyrazoles. The mechanism of these ring contraction reactions is discussed.  相似文献   

10.
Three different types of dioxidomolybdenum(VI) complexes of 4-acetyl-3-methyl-1-phenyl-5-pyrazolone (Hmp, I )), 3-methyl-1-phenyl-4-propionyl-5-pyrazolone (Hpp, II ), 4-butyryl-3-methyl-1-phenyl-5-pyrazolone (Hbutp, III ), and 4-isobutyryl-3-methyl-1-phenyl-5-pyrazolone (isobutp, IV ) have been isolated and characterized by various spectroscopic (FT-IR, UV/Vis, 1H and 13C NMR) techniques, thermal analysis and single crystal X-ray analysis. These complexes adopt a distorted six-coordinate octahedral geometry where ligands act as bidentate, coordinating through the two O atoms. These complexes have been used as catalysts to explore a single pot multicomponent (benzaldehyde or its derivatives, urea/thiourea and ethyl acetoacetate/phenyl acetoacatate) Biginelli reaction producing biologically active 3,4-dihydropyrimidin-2-(1H)-one and 3,4-dihydropyrimidin-2-(1H)-thione based biomolecules under solvent-free conditions. Presence of H2O2 improves the yield of dihydropyrimidin-2-(1H)-one but it acts as poison for the later molecule. Epoxidation of internal and terminal alkenes mainly resulted in the formation of the corresponding epoxide. The catalytic oxidative bromination of thymol, a reaction facilitated by vanadium dependent haloperoxidases, resulted in the formation of three product namely 2-bromothymol, 4-bromothymol and 2,4-bromothymol. Other phenol derivatives have also been brominated effectively.  相似文献   

11.
Reaction of N-methyl-2-amino-4-nitroaniline ( 1 ) with lactic acid afforded 2-(1-hydroxyethyl)-1-methyl-5-nitrobenzimidazole ( 2 ). Oxidation of compound 2 with chromic acid in acetic acid gave 2-acetyl-1-methyl-5-nitrobenzimidazole ( 3 ). Reaction of compound 3 with substituted 2-aminobenzaldehyde ( 4 ) under basic conditions yielded substituted 2-(1-methyl-5-nitro-2-benzimidazolyl)quinolines ( 5 ). Condensation and cyclization of o-aminoacetophenone (or substituted o-aminobenzophenones) with compound 3 under acetic condition afforded compound 7 . Condensation and cyclization of compound 1 with indole-3-carboxaldehyde ( 11 ) in ethanol in the presence of excess nitrobenzene gave 3-(1-methyl-5-nitro-2-benzimidazolyl)indole ( 12 ).  相似文献   

12.
N-Phenylurea reacted with benzoylacetone derivatives (I) to give 1,4-diaryl-6-methyl-2-(1H)pyrimidinones (II) in addition to low yields of 1,6-diaryl-4-methyl-2-(1H)pyrimidinones (IV), while N-phenylthiourea afforded only 1,6-diaryl-4-methyl-2-(1H)pyrimidinethiones (III) in good yields. Further 1,6-diaryl-4-methyl-2-(1H)- pyrimidinethiones (III) were successfully converted in satisfactory yields into the corresponding 2-(1H)-pyrimidinones (IV) by the treatment with methyl iodide in the presence of sodium methoxide in methanol at room temperature.  相似文献   

13.
In the presence of malonic acid, the reaction of 1-acetylindole ( 2 ) with manganese(III) acetate resulted in the formation of 4-acetyl-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indol-2-one ( 5 ). The same reaction of 1-acetyl-2,3-dimethylindole yielded a mixture of 2-acetoxymethyl-1-acetyl-3-methylindole and 4-acetyl-3a,8b-dimethyl-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indol-2-one, furthermore, the oxidation of 1-acetylindoline proceeded to the formation of 2, 5 and 1-acetylindoline-5-carboxylic acid.  相似文献   

14.
3-Acetyltropolone ( 1 ) reacted with aminoguanidine to afford its guanylhydrazone ( 3 ). The reaction of 3-acetyl-2-methoxytropone ( 2a ) gave 4-methyl-1(2H)-phthalazinone ( 5 ), while the reaction of 7-acetyl-2-methoxytropone ( 2b ) gave its guanylhydrazone ( 6 ) and 3-methyl-1,8-dihydrocycloheptapyrazol-8-one ( 4 ). The guanylhydrazones ( 3 and 6 ) were easily cyclized to 4 by heating in acetic acid.  相似文献   

15.
3-Acetyltropolone ( 1 ) reacted with phenylhydrazine to give 3-acetyltropolone phenylhydrazone ( 3 ) and 3-methyl-1-phenyl-1,8-dihydrocycloheptapyrazol-8-one ( 4 ). The former ( 3 ) cyclized to afford the latter ( 4 ). The reaction of 3-acetyl-2-methoxytropone ( 2a ) with phenylhydrazine gave 4 , 3-methyl-2-phenyl-2,8-dihydrocyclo-heptapyrazol-8-one ( 5 ), and 3-methyl-2-phenyl-2,8-dihydrocycloheptapyrazol-8-one phenylhydrazone ( 6 ). The compound ( 5 ) reacted with phenylhydrazine to afford 6 . The reaction of 7-acetyl-2-methoxytropone ( 2b ) with phenylhydrazone gave 7-acetyl-2-methoxytropone phenylhydrazone ( 7 ), 7-acetyl-2-(N′-phenylhydrazino)-tropone phenylhydrazone ( 8 ), 3-methyl-1-phenyl-1,8-dihydrocycloheptapyrazol-8-one phenylhydrazone ( 9 ), and 6 . The compound ( 7 ) was heated to afford 4 and reacted with phenylhydrazine to afford 8 and 9 . The compound ( 8 ) was also refluxed to give 9 .  相似文献   

16.
The mass spectral fragmentations of 3-methyl-5-pyrazolone (I), 3-methyl-5-pyrazolone-1-d1 (II), 3-methyl-5-pyrazolone-1,4,4-d3 (III), 1-acetyl-3-methyl-5-pyrazolone (IV), 3-methyl-5-ethoxy-pyrazole (V), 3,4-dimethyl-5-pyrazolone (VI), 1,3-dimethyl-5-pyrazolone (VII), 1-acetyl-5-acetoxy-3,4-dimethylpyrazole (VIII), 1,2,3-trimethyl-5-pyrazolone (IX), 3,4,4-trimethyl-5-pyrazolone (X), 3,4,4-trimethyl-5-pyrazolone-1-d1 (XI), 3-phenyl-5-pyrazolone (XII), 2-acetyl-3-phenyl-5-pyrazolone (XIII) and 5-acetoxy-3-phenylpyrazole (XIV) are reported. Comparison is made between the mass spectra of 5-pyrazolones and 3-indazolones. As for the latter compounds initial loss of ·N2R is preferred to loss of ·CHO, and is followed by loss of CO. The [M ? 1]ions are intense in the C-methyl substituted pyrazolones, and unlike the 3-indazolones, the pyrazolones do not show any significant loss of HCN from these ions. The mass spectra distinguish between certain isomeric 5-pyrazolones.  相似文献   

17.
Benzoylation of 4-methylfluorene according to Friedel-Crafts in carbon disulfide with aluminium chloride yielded two benzoyl derivatives: 5-methyl-2-benzoyl-fluorene (II) (major product), and 4-methyl-2-benzoyl-fluorene (III). By oxidation II and III gave the corresponding 9-oxo-derivatives, the structure of the last compounds being proved by an independent way.  相似文献   

18.
Cyclization of 1-(2-aminophenyl)-1-phenyl-ethylenes or 1-(2-aminophenyl)-1-phenyl-propenes (II) by condensation with phosgene led to 4-phenyl-carbostyrils (III) or 2-chloro-4-phenyl-quinolines (IV). Similarly, thiophosgene afforded 4-phenyl-thiocarbostyril. Treatment of 1-(2-aminophenyl)-2-methyl-1-p-tolyl-propene (VII) with phosgene led to the corresponding isocyanate IX, which cyclized in the presence of aluminum chloride with loss of a methyl group to 3-methyl-4-p-tolyl-carbostyril (III-6). However, 1-(2-aminophenyl)-2-methyl-1-phenyl-propene (VIII) treated with phosgene gave the isocyanate XI and 3-phenyl-3-isopropenyloxindole (X). Cyclization of the isocyanate XI with aluminium chloride led simultaneously to 3-methyl-4-phenyl-carbostyril (XIV), and with migration of a methyl group to 3-methylene-4-methyl-4-phenyl-3. 4-dihydro-carbostyril (XV).  相似文献   

19.
Reaction of ethyl or methyl 3-oxoalkanoates with N,N-dimethylformamide dimethyl acetal gave, generally in excellent yields, a series of ethyl or methyl 2-dimethylaminomethylene-3-oxoalkanoates II which reacted with phenylhydrazine to afford the esters of 5-substituted 1-phenyl-1H-pyrazole-4-carboxylic acids III in high yields. Esters III were hydrolyzed to the relative 5-substituted 1-phenyl-1H-pyrazole-4-carboxylic acids which were converted by heating to 5-substituted 1-phenyl-1H-pyrazoles in excellent yields. Reaction of II with methylhydrazine afforded in general a mixture of 3- and 5-substituted ethyl 1-methyl-1H-pyrazole-4-carboxylates with the exception of IIg , which gave in high yield methyl 5-benzyl-1-methyl-1H-pyrazole-4-carboxylate, which was hydrolyzed to the relative pyrazolecarboxylic acid. This afforded by heating 5-benzyl-1-methyl-1H-pyrazole in quantitative yield.  相似文献   

20.
Abstract

The coupling reaction between 1,3-di-O-acetyl-4-O-benzyl-2-O-methyl-α-L-rhamnopyranose (9) and methyl 4-O-benzyl-2-O-methyl-α-L-rhamno-pyranoside (4) was carried out in the presence of boron trifluoride-etherate followed by deacetylation to give the disaccharide (11) containing a free 3′ position. The second glycosylation reaction with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide in the presence of mercuric salts followed by removal of benzyl and acetyl groups provided the trisaccharide 2. The boron trifluoride catalysed condensation of 1,3,4-tri-O-acetyl-2-O-methyl-L-fucopyranose (14) and methyl 2,4,6-tri-O-benzyl-α-d-glucopyranoside (15) gave the disaccharide (16) from which the protecting groups were removed to form the disaccharide (3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号