首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully aromatic poly(heterocyclic imides) of high molecular weight were prepared by the cyclopolycondensation reactions of aromatic diamines with new monomer adducts prepared by condensing orthodisubstituted aromatic diamines with chloroformyl phthalic anhydrides. The low-temperature solution polymerization techniques yielded tractable poly(amic acid), which was converted to poly(heterocyclic imides) by heat treatment to effect cyclodehydration at 250–400°C under reduced pressure. In this way, the polyaromatic imideheterocycles such as poly(benzoxazinone imides), poly(benzoxazole imides), poly(benzimidazole imides) and poly(benzothiazole imides) were prepared, which have excellent processability and thermal stability both in nitrogen and in air. The poly(amic acids) are soluble in such organic polar solvents as N,N-dimethyl-acetamide, N-methylpyrrolidone, and dimethyl sulfoxide, and the films can be cast from the polymer solution of poly(amic acids) (ηinh = 0.8–1.8). The film is made tough by being heated in nitrogen or under reduced pressure to effect cyclodehydration at 300–400°C. The polymerization was carried out by first isolating the monomer adducts, followed by polymerization with aromatic diamines. On subsequently being heated, the open-chain precursor, poly(amic acid), undergoes cyclodehydration along the polymer chain, giving the thermally stable ordered copolymers of the corresponding heterocyclic imide structure.  相似文献   

2.
New high temperature aromatic polybenzoxazinones of high molecular weight have been prepared by the cyclopolycondensation of 4,4′-diaminobiphenyl-3,3′-dicarboxylic acid (I) with aromatic dicarboxylic acid halides (II). The low temperature solution polymerization techniques afforded poly(amic acid) (III) of high molecular weight in the first step. An open-chain precursor subsequently underwent thermal cyclodehydration along the polymer chain at 200–350°C. in the second step, to give in quantitative yield a fully aromatic polybenzoxazinone (IV) of outstanding heat stability both in nitrogen and in air. The poly(amic acid) is soluble in N-methyl-2-pyrrolidone, and tough, transparent films can be cast from solution. Insoluble aromatic polybenzoxazinone films which possess excellent oxidative and thermal stability were obtained by the heat treatment of the polyamic acid. A detailed account of polymerization conditions in the low temperature solution polymerization of polybenzoxazinones is given, and the reaction mechanisms of cyclopolycondensation of poly(amic acids) and the formation of polybenzoxazinones are discussed.  相似文献   

3.
High molecular weight polybenzoxazinones have been prepared by cyclo-polycondensation reaction of 4,4′-diamino-3,3′-biphenyldicarboxylic acid with a variety of aromatic carbonyl compounds using a solution polymerization technique in polyphosphoric acid. From the model reactions of anthranilic acid, and 4,4′-diamino-3,3′-biphenyldicarboxylic acid with benzoyl chloride in polyphosphoric acid, it is established that the cyclopolycondensation proceeds through the formation of an open-chain tractable precursor, polyamic acid of high molecular weight (ninh = 2.66) in the first step, which subsequently undergoes thermal or chemical cyclodehydration along the polymer chain, to yield, in the second step, a fully aromatic polybenz-oxazinone. Polybenzoxazinones thus obtained have excellent thermal stability both in nitrogen and in air.

The optimum polymerization conditions for obtaining polyamic acid of high molecular weight are determined by the study of reaction variables such as polymerization temperatures, monomer concentrations, and reaction time as well as the effect of P2O5 concentrations in polyphosphoric acid.  相似文献   

4.
New thermally stable poly(imide-oxoisoindolobenzothiadiazine dioxides) (PIOD) have been prepared by the three-step cyclopolycondensation reaction of diaminobenzenesulfonamides with aromatic tetracarboxylic dianhydrides. The polymerization proceeded through the formation of poly(amic acid-sulfonamides) (PAAS), followed by cyclodehydration to yield polyimide-sulfonamides (PIS), which were subsequently converted to PIOD at 300°C. PAAS having inherent viscosities in the range of 0.1–0.5 in N-methyl-2-pyrrolidone (NMP) were obtained in approximately quantitative yield. PIOD were insoluble in most organic solvents, whereas PAAS and PIS were soluble in NMP and dimethyl sulfoxide. Differential thermal analysis and thermogravimetric analysis indicated that PIOD began to decompose at 460°C in air. The cyclodehydration of the model compounds was also investigated.  相似文献   

5.
New thermostable poly(amide–benzothiadiazine dioxides) of high molecular weights have been prepared by the two-step cyclopolycondensation of diaminobenzenesulfonamides and aromatic bisacyl chlorides. In the first step, the low-temperature solution polymerization technique afforded open-chain polyamides (I) having high molecular weights. In the second step, the polymeric precursors (I) underwent chemical cyclodehydration in the presence of organic basic catalysts at 160°C to give poly(amide–benzothiadiazine dioxides) (II), whereas thermal cyclodehydration gave unsatisfactory results. Not only the open-chain polymers (I) but also the cyclized polymers (II) were soluble in polar solvents, such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone; tough films were cast from these solutions. Thermogravimetric analyses indicated that the cyclized polymers (II) began to decompose at 450–470°C under nitrogen or in air. It is interesting to note that both polymers I and II exhibited self-extinguishing properties against free flame. The cyclodehydration of model compounds was also investigated.  相似文献   

6.
Fully aromatic polyquinazolinediones (IV) of high molecular weight were obtained by thermal cyclodehydration of aromatic poly(uredio acids) (III) prepared by the polyaddition reaction of 4,4′-diaminobiphenyl-3,3′-dicarboxylic acid (I) with aromatic diisocyanates (II). From the kinetic study of reactions of model systems (anthranilic acid with phenyl isocyanate) in the presence of a variety of basic catalysts, it was established that tertiary amines had the highest catalytic activity for the formation of ureido linkage. The optimum polymerization conditions were determined by the study of reaction variables such as monomer concentration, polymerization temperature, monomer ratio, and catalyst concentration. The effect of polarity and purity of organic solvents and reactants was also studied.  相似文献   

7.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

8.
A novel class of fire- and heat-resistant matrix resins has been synthesized by thermal polymerization of ethynyl-substituted aromatic cyclotriphosphazenes. Thermal polymerization of new tris[4-(4′-ethynylbenzanilido)phenoxy]tris(phenoxy) cyclotriphosphazene ( III ) and tris[4-(4′-ethynylphthalimido)phenoxy]tris(phenoxy)cyclotriphosphazene ( VII ) at 250°C for 1–1.5 h gave tough polymers. The thermal stabilities of the polymers were evaluated in nitrogen and in air by thermogravimetric analysis (TGA). The synthesised polymers were stable to 400–410°C and showed char yield of 78–65% at 800°C in nitrogen and of 78–69% at 700°C in air. The ethynyl-substituted polymer precursor ( III ) was synthesised by the reaction of tris(4-aminophenoxy)tris(phenoxy)cyclotriphosphazene ( I ) with 4-ethynylbenzoyl chloride. The polymer precursor ( VII ) was synthesised by a solution condensation of I with 4-ethynylphthalic anhydride followed by in situ thermal cyclodehydration at 150°C. The structure of polymer precursors was characterized using proton nuclear magnetic resonance (1H-NMR), infrared (IR) spectroscopy, and elemental analysis. The curing of polymer precursors was monitored by differential scanning calorimetery (DSC) and IR spectroscopy. The synthesised matrix resins are potential candidates for the development of heat- and fire-resistant fiber-reinforced composites. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
A new class of polysulfonamideimide has been synthesized by the two-step cyclopolycondensation of 4-chlorosulfonylphthalic anhydride with aliphatic and aromatic diamines. The polycondensation-addition reaction proceeded through the formation of poly(sulfonamideamide acids), and a subsequent thermal or chemical cyclodehydration of the precursor polymers yielded polysulfonamideimides. The poly(sulfonamide amide acids) having inherent viscosity in the range of 0.1–0.7 in dimethylacetamide were obtained in high yield. All of the polymers were soluble in polar aprotic solvents and in basic solvents. Aromatic polysulfonamideimide derived from bis(4-aminophenyl) ether began to decompose at around 350°C in air as determined by differential thermal analysis and thermogravimetric analysis.  相似文献   

10.
Four novel A‐B condensation monomers containing an amine and a carboxylic acid function are described, along with their polymerization to give main chain aromatic poly(amide urea)s. The monomers, and the polymer structural unit, are N,N′‐diphenylurea derivatives. When comparing wholly aromatic polyamides, or aramids, with the poly(amide urea)s described herein, we find that the chemical resistance to hydrolysis of the later polymers increases and their thermal resistance is diminished due to the main chain urea groups, whereas their water uptake is not greatly modified. The most striking result of the new poly(amide urea)s is their outstanding mechanical resistance: their Young's modulus rises as high as 5.5 GPa and their tensile strengths as high as 170 MPa for unoriented films prepared at laboratory scale by casting. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5398–5407, 2007  相似文献   

11.
Aromatic poly(o-hydroxy amide)s having inherent viscosities of 0.6–2.2 dL/g were readily synthesized by the low-temperature solution polycondensation of N,N′,O-tris(trimethylsilyl)-substituted 2,4-diaminophenol with aromatic dicarboxylic acid chlorides in various organic solvents. The viscosity values were much higher than those of the polymers obtained by a conventional method using parent 2,4-diaminophenol. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide)s at 280°C under vacuum afforded the corresponding aromatic polyamide-benzoxazoles. Most of the poly(o-hydroxy amide)s dissolved readily in amide-type solvents, whereas the polyamide-benzoxazoles were quite insoluble in organic solvents. The polyamide-benzoxazoles, which gave yellow, transparent, and tough films, had glass transition temperatures of 260–300°C and were stable up to 400°C in air.  相似文献   

12.
Two types of polypyrazoles, unsubstituted and phenylated, were prepared by a novel synthetic route involving the cyclopolycondensation of aromatic dihydrazines and aromatic dipropynones. The polymers had inherent viscosities as high as 1.05 dL/g and were soluble in N, N-dimethylacetamide, chloroform (phenylated polypyrazoles only), and sulfuric acid. The polymers exhibited glass transition temperatures ranging from 202 to 266°C and polymer decomposition temperatures (10% weight loss) as measured by thermogravimetric analysis of 400–500°C in air and 465–512°C in nitrogen. The synthesis and characterization of several polypyrazoles are discussed.  相似文献   

13.
Two new triphenylamine-based bis (o-aminophenol) monomers, 4,4′-diamino-3,3′-dihydroxytriphenylamines, were successfully synthesized by the cesium fluoride-mediated condensation of 2-(benzyloxy)-4-fluoronitrobenzene with aniline derivatives, followed by simultaneous deprotection and reduction. Aromatic polybenzoxazoles having inherent viscosities of 0.58–1.05 dL/g were obtained by the low-temperature solution polycondensation of the bis(aminophenol)s with various aromatic dicarboxylic acid chlorides and the subsequent thermal cyclodehydration of the resultant poly(hydroxyamide)s. All the polybenzoxazoles were amorphous, and most of them were soluble in organic solvents such as m-cresol and o-chlorophenol. Flexible and tough films of polybenzoxazoles could be cast from the DMAc solutions of some aromatic poly(hydroxyamide)s, followed by thermal cyclodehydration. The glass transition temperatures and 10% weight loss temperatures of the polybenzoxazoles under nitrogen were in the range of 262–327 and 610–640°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1987–1994, 1998  相似文献   

14.
A new bis(o‐aminophenol) with a crank and twisted noncoplanar structure and ether linkages, 2,2′‐bis(4‐amino‐3‐hydroxyphenoxy)biphenyl, was synthesized by the reaction of 2‐benzyloxy‐4‐fluoronitrobenzene with biphenyl‐2,2′‐diol, followed by reduction. Biphenyl‐2,2′‐diyl‐containing aromatic poly(ether benzoxazole)s with inherent viscosities of 0.52–1.01 dL/g were obtained by a conventional two‐step procedure involving the polycondensation of the bis(o‐aminophenol) monomer with various aromatic dicarboxylic acid chlorides, yielding precursor poly(ether o‐hydroxyamide)s, and subsequent thermal cyclodehydration. These new aromatic poly(ether benzoxazole)s were soluble in methanesulfonic acid, and some of them dissolved in m‐cresol. The aromatic poly(ether benzoxazole)s had glass‐transition temperatures of 190–251 °C and were stable up to 380 °C in nitrogen, with 10% weight losses being recorded above 520 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2656–2662, 2002  相似文献   

15.
A novel bis(ether anhydride) monomer, 2′,5′‐bis(3,4‐dicarboxyphenoxy)‐p‐terphenyl dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide ion of 2′,5′‐dihydroxy‐p‐terphenyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and cyclodehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s bearing laterally attached p‐terphenyl groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were in the range of 0.62–1.26 dL/g. Most of the poly(ether imide)s obtained from both routes were soluble in polar organic solvents, such as N,N‐dimethylacetamide. All the poly(ether imide)s could afford transparent, flexible, and strong films with high tensile strengths. The glass‐transition temperatures of these poly(ether imide)s were recorded as between 214 and 276 °C by DSC. The softening temperatures of all the poly(ether imide) films stayed in the 207–265 °C range according to thermomechanical analysis. For all the polymers significant decomposition did not occur below 500 °C in nitrogen or air atmosphere. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1008–1017, 2004  相似文献   

16.
1,6-Bis(4-aminophenoxy)naphthalene ( I ) was used as a monomer with various aromatic tetracarboxylic dianhydrides to synthesize polyimides via a conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclodehydration to polyimides. The diamine ( I ) was prepared through the nucleophilic displacement of 1,6-dihydroxynaphthal-ene with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.73–2.31 dL/g. All the poly(amic acid)s could be solution cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimide films had a tensile modulus range of 1.53–1.84 GPa, a tensile strength range of 95–126 MPa, and an elongation range at break of 9–16%. The polyimide derived from 4,4′-sulfonyldiphthalic anhydride (SDPA) had a better solubility than the other polyimides. These polyimides had glass transition temperatures between 248–286°C (DSC). Thermogravimetric analyses established that these polymers were fairly stable up to 500°C, and the 10% weight loss temperatures were recorded in the range of 549–595°C in nitrogen and 539–590°C in air atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Novel aromatic polyimides containing bis(phenoxy)naphthalene units were synthesized from 1,5-bis(4-aminophenoxy)naphthalene (APN) and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities between 0.72 and 1.94 dL/g, depending on the tetracarboxylic dianhydrides used. Excepting the polyimide IVb obtained from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), all other polyimides formed brown, flexible, and tough films by casting from the poly(amic acid) solutions. The polyimide synthesized from BPDA was characterized as semicrystalline, whereas the other polyimides showed amorphous patterns as shown by the x-ray diffraction studies. Tensile strength, initial moduli, and elongation at break of the APN-based polyimide films ranged from 105–135 MPa, 1.92–2.50 GPa, and 6–7%, respectively. These polyimides had glass transition temperatures between 228 and 317°C. Thermal analyses indicated that these polymers were fairly stable, and the 10% weight loss temperatures by TGA were recorded in the range of 543–574°C in nitrogen and 540–566°C in air atmosphere, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Polymer films of some polyimides containing pendant phthalonitrile groups were prepared by casting the corresponding poly(amic acid) solutions onto glass plates, followed by thermal imidization under controlled temperature conditions. The poly(amic acid)s were synthesized by polycondensation reaction of 4,4′‐diamino‐4″‐(3,4‐dicyanophenoxy)triphenylmethane, 1, or of different amounts of 1 and 4,4′‐bis(4‐aminophenoxybiphenyl), with two aromatic dianhydrides, 4,4′‐oxydiphthalic anhydride or benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride. Most of the films were flexible and tough and exhibited high thermal stability, having the initial decomposition temperature above 400 °C. Dynamic mechanical analysis and dielectric spectroscopy revealed the influence of phthalonitrile group content on the relaxation processes of polyimides. The values of the dielectric constant at 10 kHz and 20 °C were in the range of 3.25–3.61. The films exhibited nano‐actuation in the range of 240–480 nm, depending on the phthalonitrile group content, when an electric voltage was applied on their surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
New polyphthalimidine-forming monomers, 5,5′-(oxydi-p-phenylenedicarbonyl)bis(3-benzylidenephthalide) and the 6,6′-derivative, were synthesized by the Friedel–Crafts reaction of diphenyl ether with 5- and 6-chloroformyl-3-benzylidenephthalide, respectively. The direct polycondensation of these bisphthalides with both aliphatic and aromatic diamines in o-phenylphenol at 200–250°C afforded polyphthalimidines having inherent viscosities of 0.2–1.2 dL/g in almost quantitative yields. Syntheses of aliphatic polyphthalimidines with higher inherent viscosities were also achieved by a two-step procedure involving ring-opening polyaddition and subsequent thermal cyclodehydration. All the polymers were amorphous and readily soluble in N-methyl-2-pyrrolidone (NMP), m-cresol, nitrobenzene, pyridine, and chloroform. Tough and flexible films could be cast from NMP solutions of the polymers. Glass transition temperatures of the polyphthalimidines were in the range of 158–246°C. The thermogravimetry of the aromatic polymers showed 10% weight loss in air and nitrogen at 445–515 and 500–520°C, respectively. The crosslinking reaction of some benzylidenependant polyphthalimidines took place at 300°C through double-bond addition to afford cured polymers with improved thermal stability.  相似文献   

20.
Three new thermally stable polypyromellitimide films were made by the thermal cyclodehydration of the corresponding polyamic acids obtained by the polymerization of pyromellitic dianhydride with 4,4′-bis{N2-[4-(4-aminobenzyl)phenyl]aspartimido} diphenylmethane, 4,4′-bis{N2-[4-(4-aminophenoxy)phenyl]aspartimido} diphenylether, and bis(4-aminophenoxy)tetrakis (4-phthalamic acid phenoxy)cyclotriphosphazene. The bis(4-aminophenoxy)tetrakis (4-phthalamic acid phenoxy)cyclotriphosphazene was obtained from hexakis(4-aminophenoxy)cyclotriphosphazene involving its reaction with phthalic anhydride. The structure of these materials and precursors were characterized by using Fourier-transform-infrared (FT–IR) and proton nuclear magnetic resonance spectroscopy. The thermal stabilities of the films were evaluated by the thermogravimetric analysis, showing char yields at 800°C ranging from 68% to 58% in a nitrogen atmosphere and 24% in air atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号