首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human chemokine receptor CXCR3 (hCXCR3) antagonists have potential therapeutic applications as antivirus, antitumor, and anti-inflammatory agents. A novel virtual screening protocol, which combines pharmacophore-based and structure-based approaches, was proposed. A three-dimensional QSAR pharmacophore model and a structure-based docking model were built to virtually screen for hCXCR3 antagonists. The hCXCR3 antagonist binding site was constructed by homology modeling and molecular dynamics (MD) simulation. By combining the structure-based and ligand-based screenings results, 95% of the compounds satisfied either pharmacophore or docking score criteria and would be chosen as hits if the union of the two searches was taken. The false negative rates were 15% for the pharmacophore model, 14% for the homology model, and 5% for the combined model. Therefore, the consistency of the pharmacophore model and the structural binding model is 219/273 = 80%. The hit rate for the virtual screening protocol is 273/286 = 95%. This work demonstrated that the quality of both the pharmacophore model and homology model can be measured by the consistency of the two models, and the false negatives in virtual screening can be reduced by combining two virtual screening approaches.  相似文献   

2.
3.
4.
A virtual screening method is presented that is grounded on a receptor-derived pharmacophore model termed "virtual ligand" or "pseudo-ligand". The model represents an idealized constellation of potential ligand sites that interact with residues of the binding pocket. For rapid virtual screening of compound libraries the potential pharmacophore points of the virtual ligand are encoded as an alignment-free correlation vector, avoiding spatial alignment of pharmacophore features between the pharmacophore query (i.e., the virtual ligand) and the candidate molecule. The method was successfully applied to retrieving factor Xa inhibitors from a Ugi three-component combinatorial library, and yielded high enrichment of actives in a retrospective search for cyclooxygenase-2 (COX-2) inhibitors. The approach provides a concept for "de-orphanizing" potential drug targets and identifying ligands for hitherto unexplored or allosteric binding pockets.  相似文献   

5.
We have previously examined the binding patterns of various substrates to human cytochrome P450 2D6 (CYP2D6) using a series of molecular modeling methods. In this study, we further explored the binding modes of various types of inhibitors to CYP2D6 using a combination of ligand- and protein-based modeling approaches. Firstly, we developed and validated a pharmacophore model for CYP2D6 inhibitors, which consisted of two hydrophobic features and one hydrogen bond acceptor feature. Secondly, we constructed and validated a quantitative structure-activity relationship (QSAR) model for CYP2D6 inhibitors which gave a poor to moderate prediction accuracy. Thirdly, a panel of CYP2D6 inhibitors were subject to molecular docking into the active site of wild-type and mutated CYP2D6 enzyme. We demonstrated that 8 residues in the active site (Leu213, Glu216, Ser217, Gln244, Asp301, Ser304, Ala305, and Phe483) played an important role in the binding to the inhibitors via hydrogen bond formation and/or π-π stacking interaction. Apparent changes in the binding modes of the inhibitors have been observed with Phe120Ile, Glu216Asp, Asp301Glu mutations in CYP2D6. Finally, we screened for potential binders/inhibitors from the Chinese herbal medicine Scutellaria baicalensis (Huangqin, Baikal Skullcap) using the established pharmacophore model for CYP2D6 inhibitors and molecular docking approach. Overall, 18 out of 40 compounds from S. baicalensis were mapped to the pharmacophore model of CYP2D6 inhibitors and most herbal compounds from S. baicalensis could be docked into the active site of CYP2D6. Our study has provided insights into the molecular mechanisms of interaction of synthetic and herbal compounds with human CYP2D6 and further benchmarking studies are needed to validate our modeling and virtual screening results.  相似文献   

6.
Yersinia organisms cause many infectious diseases by invading human cells and delivering their virulence factors via the type three secretion system (T3SS). One alternative strategy in the fight against these pathogenic organisms is to interfere with their T3SS. Previous studies demonstrated that thiol peroxidase, Tpx is functional in the assembly of T3SS and its inhibition by salicylidene acylhydrazides prevents the secretion of pathogenic effectors. In this study, the aim was to identify potential inhibitors of Tpx using an integrated approach starting with high throughput virtual screening and ending with molecular dynamics simulations of selected ligands. Virtual screening of ZINC database of 500,000 compounds via ligand-based and structure-based pharmacophore models retrieved 10,000 hits. The structure-based pharmacophore model was validated using high-throughput virtual screening (HTVS). After multistep docking (SP and XP), common scaffolds were used to find common substructures and the ligand binding poses were optimized using induced fit docking. The stability of the protein–ligand complex was examined with molecular dynamics simulations and the binding free energy of the complex was calculated. As a final outcome eight compounds with different chemotypes were proposed as potential inhibitors for Tpx. The eight ligands identified by a detailed virtual screening protocol can serve as leads in future drug design efforts against the destructive actions of pathogenic bacteria.  相似文献   

7.
Pharmacophore modeling and parallel screening for PPAR ligands   总被引:1,自引:0,他引:1  
We describe the generation and validation of pharmacophore models for PPARs, as well as a large scale validation of the parallel screening approach by screening PPAR ligands against a large database of structure-based models. A large test set of 357 PPAR ligands was screened against 48 PPAR models to determine the best models for agonists of PPAR-alpha, PPAR-delta, and PPAR-gamma. Afterwards, a parallel screen was performed using the 357 PPAR ligands and 47 structure-based models for PPARs, which were integrated into a 1537 models comprising in-house pharmacophore database, to assess the enrichment of PPAR ligands within the PPAR hypotheses. For these purposes, we categorized the 1537 database models into 181 protein targets and developed a score that ranks the retrieved targets for each ligand. Thus, we tried to find out if the concept of parallel screening is able to predict the correct pharmacological target for a set of compounds. The PPAR target was ranked first more often than any other target. This confirms the ability of parallel screening to forecast the pharmacological active target for a set of compounds.  相似文献   

8.
SAMPL3 fragment based virtual screening challenge provides a valuable opportunity for researchers to test their programs, methods and screening protocols in a blind testing environment. We participated in SAMPL3 challenge and evaluated our virtual fragment screening protocol, which involves RosettaLigand as the core component by screening a 500 fragments Maybridge library against bovine pancreatic trypsin. Our study reaffirmed that the real test for any virtual screening approach would be in a blind testing environment. The analyses presented in this paper also showed that virtual screening performance can be improved, if a set of known active compounds is available and parameters and methods that yield better enrichment are selected. Our study also highlighted that to achieve accurate orientation and conformation of ligands within a binding site, selecting an appropriate method to calculate partial charges is important. Another finding is that using multiple receptor ensembles in docking does not always yield better enrichment than individual receptors. On the basis of our results and retrospective analyses from SAMPL3 fragment screening challenge we anticipate that chances of success in a fragment screening process could be increased significantly with careful selection of receptor structures, protein flexibility, sufficient conformational sampling within binding pocket and accurate assignment of ligand and protein partial charges.  相似文献   

9.
β3 Adrenergic receptor (β3-AR), is a potential therapeutic target for the treatment of type II diabetes and obesity. We report the identification of novel compounds as β3-AR agonists by integrating different approaches of energetic analysis, structure based pharmacophore designing and virtual screening. In a step wise filtering protocol, structure based virtual screening of 2,33,450 compounds was done. These molecules were docked into the active site of the receptor utilizing three levels of accuracy; ligands passing the HTVS (high throughput virtual screening) step were subsequently analyzed in Glide SP (Standard Precision) and finally in Glide XP (Extra Precision) to estimate the receptor ligand binding affinities. In the second step a total of 300 pharmacophore hypotheses were generated from a set of known and diverse β3-AR agonists. The best hypothesis showed six features: three hydrogen bond acceptors, one positively charged group, and two aromatic rings. To cross validate, pharmacophore filtering was done on the set of shortlisted compounds from structure based VS (virtual screening). The different screening techniques employed were validated using enrichment factor calculations. The energetic based Pharmacophore performed fairly well at distinguishing active from the inactive compounds and yielded a greater diversity of active molecules whereas the number of actives retrieved in the case of structure based screening was the highest.  相似文献   

10.
Different virtual screening techniques are available as alternatives to high throughput screening. These different techniques have been rarely used together on the same target. We had the opportunity to do so in order to discover novel blockers of the voltage-dependent potassium channel Kv1.5, a potential target for the treatment of atrial fibrillation. Our corporate database was searched, using a protein-based pharmacophore, derived from a homology model, as query. As a result, 244 molecules were screened in vitro, 19 of them (7.8%) were found to be active. Five of them, belonging to five different chemical classes, exhibited IC50 values under 10 microM. The performance of this structure-based virtual screening protocol has been compared with those of similarity and ligand-based pharmacophore searches. The analysis of the results supports the conventional wisdom of using as many virtual screening techniques as possible in order to maximize the chance of finding as many chemotypes as possible.  相似文献   

11.
In many practical applications of structure-based virtual screening (VS) ligands are already known. This circumstance requires that the obtained hits need to satisfy initial made expectations i.e., they have to fulfill a predefined binding pattern and/or lie within a predefined physico-chemical property range. Based on the RApid Index-based Screening Engine (RAISE) approach, we introduce cRAISE—a user-controllable structure-based VS method. It efficiently realizes pharmacophore-guided protein-ligand docking to assess the library content but thereby concentrates only on molecules that have a chance to fulfill the given binding pattern. In order to focus only on hits satisfying given molecular properties, library profiles can be utilized to simultaneously filter compounds. cRAISE was evaluated on a range of strict to rather relaxed hypotheses with respect to its capability to guide binding-mode predictions and VS runs. The results reveal insights into a guided VS process. If a pharmacophore model is chosen appropriately, a binding mode below 2 Å is successfully reproduced for 85 % of well-prepared structures, enrichment is increased up to median AUC of 73 %, and the selectivity of the screening process is significantly enhanced leading up to seven times accelerated runtimes. In general, cRAISE supports a versatile structure-based VS approach allowing to assess hypotheses about putative ligands on a large scale.  相似文献   

12.
13.
Computationally efficient structure-based virtual screening methods have recently been reported that seek to find effective means to utilize experimental structure information without employing detailed molecular docking calculations. These tools can be coupled with efficient experimental screening technologies to improve the probability of identifying hits and leads for drug discovery research. Commercial software ROCS (rapid overlay of chemical structures) from Open Eye Scientific is such an example, which is a shape-based virtual screening method using the 3D structure of a ligand, typically from a bound X-ray costructure, as the query. We report here the development of a new structure-based pharmacophore search method (called Shape4) for virtual screening. This method adopts a variant of the ROCS shape technology and expands its use to work with an empty crystal structure. It employs a rigorous computational geometry method and a deterministic geometric casting algorithm to derive the negative image (i.e., pseudoligand) of a target binding site. Once the negative image (or pseudoligand) is generated, an efficient shape comparison algorithm in the commercial OE SHAPE Toolkit is adopted to compare and match small organic molecules with the shape of the pseudoligand. We report the detailed computational protocol and its computational validation using known biologically active compounds extracted from the WOMBAT database. Models derived for five selected targets were used to perform the virtual screening experiments to obtain the enrichment data for various virtual screening methods. It was found that our approach afforded similar or better enrichment ratios than other related methods, often with better diversity among the top ranking computational hits.  相似文献   

14.
AimAn integrated protocol of virtual screening involving molecular docking, pharmacophore probing, and simulations was established to identify small novel molecules targeting crucial residues involved in the variant apoE ε4 to mimic its behavior as apoE2 thereby eliminating the amyloid plaque accumulation and facilitating its clearance.Materials and MethodsAn excellent ligand-based and structure-based approach was made to identify common pharmacophoric features involving structure-based docking with respect to apoE ε4 leading to the development of apoE ε4 inhibitors possessing new scaffolds. An effort was made to design multiple-substituted triazine derivatives series bearing a novel scaffold. A structure-based pharmacophore mapping was developed to explore the binding sites of apoE ε4 which was taken into consideration. Subsequently, virtual screening, ADMET, DFT searches were at work to narrow down the proposed hits to be forwarded as a potential drug likes candidates. Further, the binding patterns of the best-proposed hits were studied and were forwarded for molecular dynamic simulations of 10 ns for its structural optimization.ResultsSelectivity profile for the most promising candidates was studied, revealing significantly C13 and C15 to be the most potent compounds. The proposed hits can be forwarded for further study against apoE ε4 involved in neurological disorder Alzheimer’s.  相似文献   

15.
This study provides results from two case studies involving the application of the HypoGenRefine algorithm within Catalyst for the automated generation of excluded volume from ligand information alone. A limitation of pharmacophore feature hypothesis alone is that activity prediction is based purely on the presence and arrangement of pharmacophoric features; steric effects remained unaccounted. Recently reported studies have illustrated the usefulness of combining excluded volumes to the pharmacophore models. In general, these excluded volumes attempt to penalize molecules occupying steric regions that are not occupied by active molecules. The HypoGenRefine algorithm in Catalyst accounts for steric effects on activity, based on the targeted addition of excluded volume features to the pharmacophores. The automated inclusion of excluded volumes to pharmacophore models has been applied to two systems: CDK2 and human DHFR. These studies are used as examples to illustrate how ligands could bind in the protein active site with respect to allowed and disallowed binding regions. Additionally, automated refinement of the pharmacophore with these excluded volume features provides a more selective model to reduce false positives and a better enrichment rate in virtual screening.  相似文献   

16.
Docking and pharmacophore screening tools were used to examine the binding of ligands in the active site of thymidine monophosphate kinase of Mycobacterium tuberculosis. Docking analysis of deoxythymidine monophosphate (dTMP) analogues suggests the role of hydrogen bonding and other weak interactions in enzyme selectivity. Water-mediated hydrogen-bond networks and a halogen-bond interaction seem to stabilize the molecular recognition. A pharmacophore model was developed using 20 dTMP analogues. The pharmacophoric features were complementary to the active site residues involved in the ligand recognition. On the basis of these studies, a composite screening model that combines the features from both the docking analysis and the pharmacophore model was developed. The composite model was validated by screening a database spiked with 47 known inhibitors. The model picked up 42 of these, giving an enrichment factor of 17. The validated model was used to successfully screen an in-house database of about 500,000 compounds. Subsequent screening with other filters gave 186 hit molecules.  相似文献   

17.
The hierarchical virtual screening (HVS) study, consisting of pharmacophore modelling, docking and VS of the generated focussed virtual library, has been carried out to identify novel high-affinity and selective β(3)-adrenergic receptor (β-AR) agonists. The best pharmacophore model, comprising one H-bond donor, two hydrophobes, one positive ionizable and one negative ionizable feature, was developed based on a training set of 51 β(3)-AR agonists using the pharmacophore generation protocol implemented in Discovery Studio. The model was further validated with the test set, external set and ability of the pharmacophoric features to complement the active site amino acids of the homology modelled β(3)-AR developed using MODELLER software. The focussed virtual library was generated using the structure-based insights gained from our earlier reported comprehensive study focussing on the structural basis of β-AR subtype selectivity of representative agonists and antagonists. The HVS with the sequential use of the best pharmacophore model and homology modelled β(3)-AR in the screening of the generated focussed library has led to the identification of potential virtual leads as novel high-affinity and selective β(3)-AR agonists.  相似文献   

18.
The design of biologically active compounds from ligand-free protein structures using a structure-based approach is still a major challenge. In this paper, we present a fast knowledge-based approach (HS-Pharm) that allows the prioritization of cavity atoms that should be targeted for ligand binding, by training machine learning algorithms with atom-based fingerprints of known ligand-binding pockets. The knowledge of hot spots for ligand binding is here used for focusing structure-based pharmacophore models. Three targets of pharmacological interest (neuraminidase, beta2 adrenergic receptor, and cyclooxygenase-2) were used to test the evaluated methodology, and the derived structure-based pharmacophores were used in retrospective virtual screening studies. The current study shows that structure-based pharmacophore screening is a powerful technique for the fast identification of potential hits in a chemical library, and that it is a valid alternative to virtual screening by molecular docking.  相似文献   

19.
Type 2 diabetes mellitus (T2DM) is one of the most widely prevalent metabolic disorders with no cure to date thus remains the most challenging task in the current drug discovery. Therefore, the only strategy to control diabetes prevalence is to develop novel efficacious therapeutics. Dipeptidyl Peptidase 4 (DPP-4) inhibitors are currently used as anti-diabetic drugs for the inhibition of incretins. This study aims to construct the chemical feature based on pharmacophore models for dipeptidyl peptidase IV. The structure-based pharmacophore modeling has been employed to evaluate new inhibitors of DPP-4. A four-featured pharmacophore model was developed from crystal structure of DPP-4 enzyme with 4-(2-aminoethyl) benzenesulfonyl fluoride in its active site via pharmacophore constructing tool of Molecular Operating Environment (MOE) consisting F1 Hyd (hydrophobic region), F2 Hyd|Cat|Don (hydrophobic cationic and donor region), F3 Acc (acceptor region) and F4 Hyd (hydrophobic region). The generated pharmacophore model was used for virtual screening of in-house compound library (the available compounds which were used for initial screening to get the few compounds for the current studies). The resultant selected compounds, after virtual screening were further validated using in vitro assay. Furthermore, structure-activity relationship was carried out for the compounds possessing significant inhibition potential after docking studies. The binding free energy of analogs was evaluated via molecular mechanics generalized Born surface area (MM-GBSA) and Poisson-Boltzmann surface area (MM-PBSA) methods using AMBER 16 as a molecular dynamics (MD) simulation package. Based on potential findings, we report that selected candidates are more likely to be used as DPP-4 inhibitors or as starting leads for the development of novel and potent DPP-4 inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号