首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
 二 核聚变研究的发展历史早在1929年,阿特金森(Atki-nson)和奥特迈斯(Houtermas)从理论上计算了氢在几千万度高温下聚变成氦的可能性.1934年,奥立芬特(Oliphant)发现了第一个D-D反应.1942年施莱伯(Schreiber)和金(King)在美国普渡大学首次发现了D-T核反应.  相似文献   

2.
 六、各种形式的等离子体诊断技术要想真实地了解聚变装置中的高温等离子体的运动规律,的确是一件相当复杂的事情.发展等离子体诊断技术的目的就是设法利用一切可能利用的技术手段来了解等离子体的内部状态,例如中子温度、离子温度、等离子体电流和磁场的大小及空间分布;了解各种输运过程的特点,各种波动过程和不稳定性的模式及其增长率,以及等离子体的约束时间等.在受控核聚变研究的发展过程中,研制新的诊断技术一直占有相当重要的地位.有些刚出现的新技术很快就被应用到等离子体诊断方面.激光技术便是一个例子.  相似文献   

3.
 托卡马克 这是一种环形的磁约束聚变装置.这种装置在近20年来进展最快,近一二年内可望达到劳逊判据,实现聚变点火,验证受控核聚变的科学可行性,并有可能首先建成托卡马克型的聚变反应堆进行发电.因而科学界和许多国家对托卡马克极为重视,投入了大批优秀人材和巨大的财政支持.托卡马克装置如题图所示.它的主体结构包括两部分,即真空系统和磁场系统.真空室真空度要求达到10-7帕以上.磁场系统包括磁场线圈及其供电电源.用分立的环形线圈(称纵向场线圈)排列成大环,套在形状像救生圈的环形真空室上.  相似文献   

4.
 有位教授来信言道:有关物理前沿问题,“其它书刊中或有涉及,然皆简而又简,尤缺定量描述,求教于同仁,昏同此感”.其它读者,和者甚众,希望本刊能辟数页之地,系统地介绍诸如受控核聚变、超弦理论、超引力理论、现代K-K理论、弯曲空间量子场论等涉及到物理前沿领域中的一些问题.为此,本刊新辟《物理前沿》栏目,并请中国科技大学副校长、中科院数理学部委员钱临照教授主持.本期发表由朱士尧先生撰写的《受控核聚变》一文,内容翔实,文笔流畅,可谓开篇之大作.全文分八个部分:一、创造人间小太阳;二、核聚变研究的发展历史;三、劳逊判据和热核点火;四、磁约束原理与磁约束装置;五、如何达到聚变点火温度;六、多种形式的等离子体诊断技术;七、令人鼓舞的重要进展和当代聚变研究的前沿课题;八、21世纪的新能源.本刊分六期刊出,请读者注意.  相似文献   

5.
 核聚变与核裂变可以说是核能的一对孪生兄弟.氘的聚变反应是在1934年世界上第一台加速器投入运行后不久就实现的,而铀的裂变反应直到1938年底才被发现.然而,裂变能源的发展一帆风顺而聚变能源的探索却道路曲折.早在1942年就建成了具有功率输出的实验性裂变反应堆,50年代就建成了商用核电站.而核聚变直到最近才基本证明了它的科学可行性,90年代可建成具有功率输出的实验反应堆,要到21世纪初才能发展商用聚变核电站.这是因为实现受控核聚变的条件实在太苛刻了!首先要使等离子体达到1亿度的极高温度,并且维持足够长的时间,以便产生足够多的聚变反应,释放大量的能量.  相似文献   

6.
 五、如何达到点火温度核聚变研究的重要目标之一是设法把等离子体的温度提高到10keV以上.这是实现聚变点火必不可少的基本条件之一.主要的加热手段包括欧姆加热,高能中性粒子束注入加热,大功率射频波加热,绝热压缩加热和α粒子加热等.1.欧姆加热的原理及其局限性众所周知,等离子体是良导体,但具有一定的电阻,一旦有电流通过,因电阻效应而得到了加热.按照欧姆定律,其加热功率密度表示为:P=ηj2,式中η是等离子体电阻率,可表示为η=2.8×10-8/T(?)(欧姆米),其中电子温度T?以keV为单位.这个简单表达式是假定采用氢等离子体、其密度为1020m-3情况下代入著名的斯必泽公式得到的.从上式中可知,随着等离子体电子温度的不断升高,其电阻率急剧下降,由此引起欧姆加热的功率密度急剧下降.这说明欧姆加热这种方式有局限性.我们知道,所有托卡马克的等离子体最初都由环向的等离子体电流提供欧姆加热.但经过计算表明,仅依靠欧姆加热,其电子温度至多加热到1.5keV左右.为使等离子体达到10keV以上的聚变点火温度,必须在欧姆加热的基础上采用等离子体辅助加热.目前获得成功并受到广泛重视的辅助加热手段有高能中性粒子束注入法和射频波共振吸收法.  相似文献   

7.
8.
 一、聚变能---未来人类的理想能源能源、信息和材料作为社会进步的三大支柱,是现代社会赖以生存和发展的基本条件。我国人口众多,能源需求旺盛,随着国民经济的发展,能源问题日益紧迫。至本世纪中叶,要使我国成为中等发达国家,则需要建立约每年38~45亿吨标准煤、电力装机容量15亿千瓦或者更大些的能源体系。在我国能源构成中,化石燃料所占份额极大,水力资源有限,其他如太阳能、风能、潮汐能、生物能等,只起到重要补充作用。众所周知,化石燃料所造成的环境污染,化工原料的浪费以及运输能力的消耗等都不容忽视.  相似文献   

9.
邓希文 《物理》1999,28(6):333-336
描述了用于受控热核聚变实验研究的中国环流新一号装置和初步物理实验结果。  相似文献   

10.
五、如何达到点火温度核聚变研究的重要目标之一是设法把等离子体的温度提高到10keV以上.这是实现聚变点火必不可少的基本条件之一.主要的加热手段包括欧姆加热,高能中性粒子束注入加热,大功率射频波加热,绝热压缩加热和α粒子加热等.1.欧姆加热的原理及其局限性众所周知,等离子体是良导体,但具有一定的电阻,一旦有电流通过,因电阻效应而得到了加热.按照欧姆定律,其加热功率密度表示为:P=ηj~2,式中η是等离子体电阻率,可表示为η=2.8×10~(-8)/T(?)(欧姆米),其中电子温度T_(?)以keV为单位.这个简单表达式是假定采用氢等离子体、其密度为10~(20)m~(-3)情况下代入著名的斯必泽公式得到的.从上式中可知,随着等离子体电子温度的不断升高,其电阻率急剧下降,由此引起欧姆加热的功率密度急剧下降.这说明欧姆加热这种方式有局限性.我们知道,所有托卡马克的等离子体最初都由环向的等离子体电流提供欧姆加热.但经过计算表明,仅依靠欧姆加热,其电子温度至多加热到1.5keV左右.为使等离子体达到10keV以上的聚变点火温度,必须在欧姆加热的基础上采用等离子体辅助加热.目前获得成功并受到广泛重视的辅助加热手段有高能中性粒子束注入法和射频波共振吸收法.  相似文献   

11.
核聚变与核裂变可以说是核能的一对孪生兄弟.氘的聚变反应是在1934年世界上第一台加速器投入运行后不久就实现的,而铀的裂变反应直到1938年底才被发现.然而,裂变能源的发展一帆风顺而聚变能源的探索却道路曲折.早在1942年就建成了具有功率输出的实验性裂变反应堆,50年代就建成了商用核电站.而核聚变直到最近才基本证明了它的科学可行性,90年代可建成具有功率输出的实验反应堆,要到21世纪初才能发展商用聚变核电站.这是因为实现受控核聚变的条件实在太苛刻了!首先要使等离子体达到1亿度的极高温度,并且维持足够长的时间,以便产生足够多的聚变反应,释放大量的能量.  相似文献   

12.
托卡马克 这是一种环形的磁约束聚变装置.这种装置在近20年来进展最快,近一二年内可望达到劳逊判据,实现聚变点火,验证受控核聚变的科学可行性,并有可能首先建成托卡马克型的聚变反应堆进行发电.因而科学界和许多国家对托卡马克极为重视,投入了大批优秀人材和巨大的财政支持.托卡马克装置如题图所示.它的主体结构包括两部分,即真空系统和磁场系统.真空室真空度要求达到10~(-7)帕以上.磁场系统包括磁场线圈及其供电电源.用分立的环形线圈(称纵向场线圈)排列成大环,套在形状像救生圈的环形真空室上.这些分立的环形线圈连接起来形成螺  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号