首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In formation of binary self-assembled monolayers (SAMs) composed of 2-aminoethanethiol (AET) and 2-mercaptoethane sulfonic acid (MES) by adsorption from an ethanol solution on Au(111), the adsorption shows nearly ideal nonideality in that the surface ratio of MES to AET in the SAM is unity and does not depend on the mixing ratio of MES to AET in the bathing ethanol solution used for preparing SAMs, chi(soln)MES, over the wide range of chi(soln)MES between 0.01 and 0.95. X-ray photoelectron spectroscopy confirms that at least 80% of AET molecules adsorbed are protonated in this range of chi(soln)MES, indicating that the electrostatic interaction between positively charged AET and negatively charged MES is responsible to the observed nonideality. Correspondingly, there appears only one cathodic peak in a linear-sweep voltammogram of the reductive desorption of the SAM, having a narrow full width at half-maximum of about 20 mV. This suggests the presence of strong lateral attractive interaction between the adsorbed thiolates.  相似文献   

2.
The electrochemical properties of cytochrome c (cyt c) adsorbed on mixed self-assembled monolayers (SAMs) of 2-mercaptoethanesulfonate (MES)/2-mercaptoethanol (MEL) are compared with those on single-component SAMs of MES, MEL, and mercaptopropionic acid (MPA), using cyclic voltammetry and potential-modulated UV-vis reflectance spectroscopy. The rate constant of electron transfer (ET), k(et), of cyt c adsorbed on the SAM of MPA decreases from 1450 +/- 210 s(-1) at pH 7 to 890 +/- 100 s(-1) at pH 9. In contrast, the value of k(et) of cyt c on the SAM of MES is pH-independent at 100 +/- 15 s(-1). Those facts suggest that a large negative charge density on the SAM surface slows down the ET between cyt c and the electrode. The surface charge density of the SAM affects also the amount of electroactive cyt c, Gamma(e), which decreases from 10.0 +/- 1.0 to 5.3 +/- 1.1 pmol cm(-2) with increasing pH from 7 to 9 on the SAM of MPA. Similarly, the k(et) of cyt c adsorbed on the mixed SAMs of MES/MEL sharply decreases from 900 +/- 300 s(-1) to 110 s(-1) as the surface mole fraction of MES increases beyond 0.5, suggesting the presence of a negative surface charge threshold beyond which the rate of ET of cyt c is dramatically lowered. The decrease in the k(et) on the SAMs at high negative charge densities probably results from the confinement of adsorbed cyt c by the strong electrostatic force to an orientation that is not optimal for the ET reaction.  相似文献   

3.
Molecular dynamics simulations are used to study the micronature of the organization of water molecules on the flat surface of well-ordered self-assembled monolayers (SAMs) of 18-carbon alkanethiolate chains bound to a silicon (111) substrate. Six different headgroups (-CH(3), -C═C, -OCH(3), -CN, -NH(2), -COOH) are used to tune the character of the surface from hydrophobic to hydrophilic, while the level of hydration is consistent on all six SAM surfaces. Quantum mechanics calculations are employed to optimize each alkyl chain of the different SAMs with one water molecule and to investigate changes in the configuration of each headgroup under hydration. We report the changes of the structure of the six SAMs with different surfaces in the presence of water, and the area of the wetted surface of each SAM, depending on the terminal group. Our results suggest that a corrugated and hydrophobic surface will be formed if the headgroups of SAM surface are not able to form H-bonds either with water molecules or between adjacent groups. In contrast, the formation of hydrogen bonds not only among polar heads but also between polar heads and water may enhance the SAM surface hydrophilicity and corrugation. We explicitly discuss the micromechanisms for the hydration of three hydrophilic SAM (CN-, NH(2)- and COOH-terminated) surfaces, which is helpful to superhydrophilic surface design of SAM in biomimetic materials.  相似文献   

4.
Using atomic force microscopy, we have investigated the formation of the dipalmitoylphosphatidylcholine (DPPC) membrane by the vesicle fusion method on SiO2 surfaces modified with self-assembled monolayer (SAM) islands of octadecyltrichlorosilane (OTS) with sizes comparable to those of the vesicles. OTS-SAM islands with various sizes and coverages can be constructed on the SiO2 surfaces prepared by thermal oxidation followed by partial hydroxylation in a H2O2/H2SO4 solution. When vesicles are sufficiently smaller than the SiO2 domains, DPPC bilayers and DPPC/OTS layers form on the SiO2 and OTS domains, respectively. However, the adhesion of larger vesicles onto SiO2 is prevented by the OTS islands; therefore only DPPC/OTS layers form without formation of DPPC bilayers on the SiO2 domains. On surfaces with domains on the scale of tens to hundreds of nanometers, the relative size between the hydrophilic domains and the vesicles becomes an important factor in the membrane formation by the fusion of vesicles.  相似文献   

5.
The kinetics of the adsorption of metal ions onto a thiolated surface and the selective and quantitative sensing of metal ions were explored using surface plasmon resonance (SPR) spectroscopy. The target metal ion was an aqueous solution of Pt2+ and a thin-gold-film-coated glass substrate was modified with 1,6-hexanedithiol (HDT) as a selective sensing layer. SPR spectroscopy was used to examine the kinetics of metal ion adsorption by means of the change in SPR angle. The selectivity of the thiolated surface for Pt2+ over other divalent metal ions such as Cu2+, Ni2+, and Cd2+ was evident by the time-resolved SPR measurement. SPR angle shift, deltatheta(SPR), was found to increase logarithmically with increasing concentration of Pt2+ in the range of 1.0 x 10(-5)-1.0 mM. The rate of Pt2+ adsorption on HDT observed at both 0.1 and 1 mM Pt2+ accelerates until the surface coverage reaches approximately 17%, after which the adsorption profile follows Langmuirian behavior with the surface coverage. The experimental data indicated that heavy metal ions were adsorbed to the hydrophobic thiolated surface by a cooperative mechanism. A mixed self-assembled monolayer (SAM) composed of HDT and 11-mercaptoundecanoic acid was used to reduce the hydrophobicity of the thiol-functionalized surface. The addition of hydrophilic groups to the surface enhanced the rate of adsorption of Pt2+ onto the surface. The findings show that the adsorption of metal ions is strongly dependent upon the hydrophilicity/hydrophobicity of the surface and that the technique represents an easy method for analyzing the adsorption of metal ions to a functionalized surface by combining SPR spectroscopy with a SAM modification.  相似文献   

6.
Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials.  相似文献   

7.
A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of [111] oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 x 2) superlattice structure is observed as a (3 x 2) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au[111] lattice and aligned along its [112] lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of approximately 20 nm.  相似文献   

8.
The combination of HgF2 and 2-aminoethanethiol (AET, with some AET.HCl present) yielded a cyclic tetranuclear thiolate, [Hg4Cl4(SCH2CH2NH2)4] (1), with alternating Hg and S atoms. The Cl from the reaction mixture led to the formation of Hg-Cl bonds with no Hg-F in the final product. In contrast, a similar reaction with HgBr2 yielded a nonanuclear cluster, [Hg9Br15(SCH2CH2NH3)15]3+ (2), and the disulfide salt {[HgBr4][(NH3CH2CH2S-)2]} (3). Despite similar reactions, the AET groups in 2 are protonated compared to the nonprotonated amine groups in 1, which allows the ligand to chelate the Hg atom in the latter compound. The reaction with HgI2 yielded a cyclic tetranuclear compound, [Hg4I6(SCH2CH2NH2)2(SCH2CH2NH3)2](H2O/EtOH) (4), containing protonated and nonprotonated AET groups. Compound 4 at room temperature irreversibly rearranges to [Hg4I4(SCH2CH2NH2)4] (5), which is isostructural to 1. A systematic pathway for the formation of 1 along with the intramolecular conversion of 4 to 5 is proposed. These compounds demonstrate that very diverse Hg-S compounds form under similar reaction conditions.  相似文献   

9.
Monte Carlo study of surfactant adsorption on heterogeneous solid surfaces   总被引:1,自引:0,他引:1  
The equilibrium between free surfactant molecules in aqueous solution and adsorbed layers on structured solid surfaces is investigated by lattice Monte Carlo simulation. The solid surfaces are composed of hydrophilic and hydrophobic surface regions. The structures of the surfactant adsorbate above isolated surface domains and domains arranged in a checkerboard-like pattern are characterized. At the domain boundary, the adsorption layers display a different behavior for hydrophilic and hydrophobic surface domains. For the checkerboard-like surfaces, additional adsorption takes place at the boundaries between surface domains.  相似文献   

10.
Alpha-cyclodextrin (alpha-CD) with an amino group was conjugated to an alpha, omega-dicarboxylated poly(ethylene glycol) (PEG). The inhibition constant (Ki) of the alpha-CD-PEG conjugate for the catalysis by beta-amylase was larger than that of alpha-CD, due to a steric obstruction of the PEG moiety to the binding of alpha-CD moiety to beta-amylase. alpha-CD-PEG was further modified with cystamine (CD-PEG-Cys) or cysteamine methyl disulfide (CD-PEG-MDS), and the disulfide-carrying alpha-CD-PEG was accumulated on a gold surface as a self-assembled monolayer (SAM). The binding of beta-amylase to the alpha-CD-PEG SAM was followed by a decrease in cathodic peak current in the voltammogram of hydroquinone as a probe using a cyclic voltammetry (CV). The beta-amylase bound to the alpha-CD-PEG SAM was desorbed by the addition of free alpha-CD, and the ratio of desorbed beta-amylase from the SAM of alpha-CD-PEG-Cys to the total amount of the enzyme bound to the SAM was 40% whereas that from the alpha-CD-PEG-MDS SAM was 83-85%. The percentage of desorption was increased to 100% by the treatment of the alpha-CD-PEG-MDS SAM-carrying electrode with 2-hydroxyethyldisulfide prior to the immersion in the enzyme solution. Adsorption and desorption processes of beta-amylase to the surface of alpha-CD-PEG-MDS SAM were clearly observed using localized surface plasmon resonance absorption spectroscopy. The binding constant of the enzyme to the surface-confined alpha-CD-PEG was much larger than that to free alpha-CD, probably due to a large local concentration of the alpha-CD moiety on the gold surface.  相似文献   

11.
The temperature-dependent,second-order,nonlinear,optical coefficient(x(2)).piezoelectric coefficient (d33),pyroelectric coefficient(Ps) and domains on triglycine sulfate(TGS) reported herein provide a clue for us to investigate these as a typical second-order phase transition.The symmetry breaking occurrence is definitely confirmed by the temperature-dependent x(2) in which x(2) displays a limited value at the ferroelectric phase,indicating the space group(P21) chosen is correct,and when x(2) basically maintains a zero value at the paraelectric phase,indicating the space group should be centric.Interestingly,after normalization of x(2),d33 or Ps,the change trend with temperature is basically overlapped,probably abiding by Landau theory.Moreover,temperature-dependent domains directly show the symmetry breaking occurrence.  相似文献   

12.
ss—DNA在纳米金上固载和杂化的化学传感研究   总被引:9,自引:0,他引:9  
将2-氨乙基硫醇(AET)固载到玻碳电极(GCE)表面,进而化学吸附纳米金(NG),并在纳米金上固载ss-DNA得到ss-DNA/NG/AET/GCE,以Co(bp y)3^3+,但用pH7.0的磷酸缓冲液浸泡可基本上避免这种变性,并时显提高杂化反应的识别能力。结合在ds-DNA/NG/AET/GCE上的Co(bpy)3^3+的峰电流与扫速的线性关系可保持到80mV/s,与电沉积法固载纲米金相比较,本电极更稳定  相似文献   

13.
Single-component and mixed self-assembled monolayers (SAMs) of one- and three-ring semirigid tetrahydro-4H-thiopyran end-capped oligo(cyclohexylidenes)-that is, thiopyran (1), 4-(4-cyclohexylidene-cyclohexylidene)tetrahydro-4H-thiopyran (2), and 4-(tetrahydro-4H-thiopyran-4-cyclohexylidene-4'-ylidene)tetrahydro-4H-thiopyran (3)--on Au(111) substrates have been prepared and studied by cyclic voltammetry (CV), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). It was found that the shortest adsorbate 1 more readily forms a SAM than 2 or 3. Notwithstanding, the SAMs of 2 or 3 are thermodynamically more stable due to favorable intermolecular attractions. Holes were made with the AFM tip establishing tilt angles of 30-50 degrees with respect to the surface normal for all SAMs. STM imaging showed well-ordered, line-shaped packing patterns with molecular resolution for the SAM of 2. Similar patterned structures were not observed for 1 and 3. Mixed SAMs were prepared by exposing a SAM of 1 to ethanol solutions of either 2 or 3. STM imaging revealed that domains of molecules of 2 or 3 amidst a monolayer of 1 are formed in both cases. Whereas in the mixed SAM of 1 and 2 the domains are irregularly shaped, circular islands of uniform size are found in the mixed SAM of 1 and 3.  相似文献   

14.
High proton conductivity in hydrophobic backbone‐based polymers such as Nafion is known to be due to the formation of organized ionic clusters and channels upon hydration. However, a lower proton conductivity in hydrophilic, ionic polymers and the role played by the microstructure are not well understood. In this work, we demonstrate the importance of heterogeneity in crosslinked ionic polymer networks in explaining proton conductivity. Poly(vinyl alcohol) (PVA) crosslinked with sulfosuccinic acid (SSA) is used as the model polymer system for the study. Evolution of the microstructure with hydration and the effect on proton conductivity are analyzed using ATR‐FTIR spectroscopy, dielectric spectroscopy, and small‐angle neutron scattering. We show that the presence of the two hydrophilic groups in PVA‐SSA (hydroxyl and sulfonic acid), as opposed to Nafion, results in competition for water and a lower proton conductivity. The crosslinked polymer–water system contains heterogeneous domains of crosslink nodes which are conductive. These domains (of size 20–35 Å) interconnect with each other and form tortuous percolating domains through which proton conduction takes place. The presence of hydroxyl groups results in some of the domains being ineffective for proton transport, resulting in a lower conductivity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1087–1101  相似文献   

15.
We report thiol-on-gold self-assembled monolayers (SAMs) that can be photodeprotected using soft UV irradiation (lambda = 365 nm) to yield CO(2)H functionalized surfaces complementing those reported previously, which yielded NH(2) functionalized surfaces. The photolysis of these SAMs were monitored using a combination of surface sensitive techniques. In the SAM environment the photodeprotection yields are lower than those obtained for equivalent reactions in dilute solution. The protected carboxylic acids SAMs are shown to have a low yield approximately 50% due to competing photoreduction reactions of the nitro group. The results from infrared studies show that, as the photolysis progresses, the long chain protected residues reorganize and shield the functional COOH groups, thereby reducing the hydrophilic character of the surface.  相似文献   

16.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

17.
An electrical junction formed by mechanical contact between two self-assembled monolayers (SAMs)--a SAM formed from an dialkyl disulfide with a covalently linked tetracyanoquinodimethane group that is supported by silver (or gold) and a SAM formed from an alkanethiolate SAM that is supported by mercury-rectifies current. The precursor to the SAM on silver (or gold) was bis(20-(2-((2,5-cyclohexadiene-1,4-diylidene)dimalonitrile))decyl)) disulfide and that for the SAM on mercury was HS(CH(2))(n-1)CH(3) (n = 14, 16, 18). The electrical properties of the junctions were characterized by current-voltage measurements. The ratio of the conductivity of the junction in the forward bias (Hg cathodic) to that in the reverse bias (Hg anodic), at a potential of 1 V, was 9 +/- 2 when the SAM on mercury was derived from HS(CH(2))(15)CH(3). The ratio of the conductivity in the forward bias to that in the reverse bias increased with decreasing chain length of the alkanethiol used to form the SAM on mercury. These results demonstrate that a single redox center asymmetrically placed in a metal-insulator-metal junction can cause the rectification of current and indicate that a fixed dipole in the insulating region of a metal-insulator-metal junction is not required for rectification.  相似文献   

18.
Self-assembled monolayer (SAM) formation of alkanethiols with ionic, hydrophilic terminal functionalities onto various O(2) plasma/ethanol pretreated gold substrates was characterized to explore the effect of gold surface oxide on the SAM packing quality. Oxygen adsorption induced by the Au(2)O(3) surface residuals are observed on the plasma-oxidized and O(2) plasma/ethanol-rinsed pretreated Au surfaces while no obvious adsorbed oxygen is found on freshly coated and O(2) plasma/ethanol sonication pretreated Au substrates. A model for the formation of hydrophilic terminated SAMs, -OH, -COOH, and -PO(3)H(2) is proposed. According to this model, the ionic and/or other binding interactions between the surface Au(2)O(3) and the alkanethiol hydrophilic terminal end as well as the interactions between the terminal SAM functionalities could cause the packing disorder found on these three SAMs formed on Au substrates containing Au(2)O(3) surface species. Copyright 2001 Academic Press.  相似文献   

19.
Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.  相似文献   

20.
Snow AW  Jernigan GG  Ancona MG 《The Analyst》2011,136(23):4935-4949
Self-assembled monolayers (SAMs) of HS(CH(2))(n)COOH, n = 5, 10, 15 deposited from ethanol solution onto gold are prepared by five approaches, and their packing densities are evaluated by X-ray photoelectron spectroscopy (XPS) measurements. The five approaches are: (1) direct deposition; (2) acetic-acid-assisted deposition; (3) butyl-amine-assisted deposition; (4) displacement of a preformed HS(CH(2))(n)CH(3) (n = 5, 10, 15) SAMs; and (5) co-deposition with HS(CH(2))(n)CH(3) (n = 5, 10, 15). Packing density metrics are calculated from measurements of SAM and substrate photoemission intensities and their attenuations by two methods. In one case the attenuated photoemissions are expressed as a ratio relative to comparable measurements on an experimental HS(CH(2))(n)CH(3) model system. In the other case a new method is introduced where a calculated attenuation based on theoretical random coil and extended chain models is used as the reference to determine a packing density fraction. Packing densities are also correlated with the S2p(Au-bonded):Au4f peak area ratios and with shifts in the C1s binding energies. SAMs prepared by the direct deposition are a partial multilayer where a second molecular layer is physisorbed onto the SAM and not removable by solvent washing. The addition of acetic acid to the deposition solution disrupts dimer associations of HS(CH(2))(n)COOH in solution and at the surface of the monolayer and yields the most ordered monolayer with the highest density of -COOH groups. The addition of butyl amine results in a labile ammonium carbonate ion pair formation but results in a lower packing density in the SAM. The displacement of the preformed HS(CH(2))(n)CH(3) SAM and the co-deposition of HS(CH(2))(n)CH(3) with HS(CH(2))(n)COOH result in SAMs with little incorporation of the -COOH component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号