首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张玉萍  郑义  张会云  王鹏  姚建铨 《中国物理》2006,15(9):2018-2021
A compact, efficient and high-power laser diode (LD) single-end-pumped Nd:YVO4 laser with continuous-wave emission at 1342 nm is reported. With a single crystal single-end-pumped by fibre-coupled LD array, an output power of 7.36W is obtained from the laser cavity of concave-convex shape, corresponding to an optical-to-optical efficiency of 32.8%. The laser is operated in TEM00 mode with small rms amplitude noise of 0.3%. The influences of the Nd concentration, transmissivity of the output mirror and the cavity length on the output power have been studied experimentally.  相似文献   

2.
A laser-diode end-pumped Nd:YVO4 slab laser with a fiat-concave stable cavity at 1342nm is demonstrated. Under the pumping power of 92 W, a cw laser of output 17.8 W is obtained with the slope efficiency of 25.6%.  相似文献   

3.
We report a high-power high-efficient continuous-wave (cw) diode-end-pumped Nd:YVO4 1342-nm laser with a short plane-parallel cavity and an efficient cw intracavity frequency-doubled red laser at 671 nm with a compact three-element cavity. At incident pump power of 20.6 W, a maximum output power of 7 W at 1342 nm is obtained with a slope effciency of 37.3%. By inserting a type-Ⅰ critical phase-matched LBO crystal as intracavity frequencydoubler, a cw red output as much as 2.85-W is achieved with an incident pump power of 16.9 W, inducing an optical-to-optical conversion efficiency of 16.9%. To the best of our knowledge, this is the highest output of diodepumped solid-state Nd:YVO4 red laser. During half an hour, the red output is very stable, and the instability of output power is less than 1%.  相似文献   

4.
All-Solid-State Near-Infrared and Blue Femtosecond Laser System   总被引:1,自引:0,他引:1       下载免费PDF全文
《中国物理快报》2002,19(2):203-204
We investigate an all-solid-state continuous wave(cw) green (532nm),femtosecond near-infrared (823.1nm) and blue (402nm) laser system which is pumped by a diode-laser-pumped intracavity frequency-doubled and all-self-structuring cw Nd:YVO4/KTP 532nm green laser.The cavity parameters of the Nd:YVO4/KTP laser have been optimized and the maximum 5.6W TEM00 green laser is obtained at a 22W pump power with an optical-optical conversion efficiency of 25.5%.A Ti:Sapphire laser and nonlinear second-harmonic generation by a crystal BBO is used to obtain different wavelengths.A femtosecond laser with an average output power of 300mW at 823.1nm and 73mW at 402nm is obtained when the green pump power is 2.5W.The spectral full width at half maximum are 32.3 nm and 5.1 nm,which can sustain the pulses of 22 fs and 33.3 fs,respectively.  相似文献   

5.
We present a high power and efficient operation of the ^4F3/2 → ^4I9/2 transition in Nd:GdVO4 at 912nm. In the cw mode, the maximum output power of 8.6 W is achieved when the incident pump power is 40.3 W, leading to a slope efficiency of 33.3% and an optical-optical efficiency of 21.3%. To the best of our knowledge, this is the highest cw laser power at 912nm obtained with the conventional Nd:GdVO4 crystal. Pulsed operation of 912nm laser has also been realized by inserting a small aeousto-optie (A-O) Q-Switch inside the resonator. As a result, the minimal pulse width of 20ns and the average laser power 1.43 W at the repetition rate of lOkHz are obtained, corresponding to 7.1 kW peak power. We believe that this is the highest laser peak power at 912nm. Furthermore, duration of 65ns has also been acquired when the repetition rate is 100 kHz.  相似文献   

6.
A maximum of 9.9 W cw TEM00 output at 532nm laser has been obtained by intracavity frequency doubling with LBO in laser-diode single-end-pumped Nd:YVO4. The Nd:YVO4/LBO green laser has a simple threemirror V-fold cavity structure. The optical-optical conversion efficiency was 34.8%. Based on the equation of thermal conduction, a general solution for the laser-crystal interior temperature distribution is obtained by the semi-analytical thermal analysis method. Using the software system, the cavity parameters have been optimized according to the stability condition and the astigmatic compensation principle. The astigmatism in the cavity has been effectively controlled and the resonator was insensitive to the thermal lens in the Nd:YVO4 crystal.  相似文献   

7.
We report a stable high power and high beam quality diode-side-pumped cw green laser from intracavity frequency-doubled Nd: YAG laser with KTP. By using a L-shaped concave-convex resonator, designed with two Nd:YAG rods birefringence compensation, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously. The green laser delivers a maximum 532nm output power of 23.2 W. Under 532nm output power of 20.9 W, the beam quality factor is measured to be 4.1, and the fluctuation of the output power is less than 1.4% in an hour.  相似文献   

8.
A highly efficient cascaded P-doped Raman fiber laser (RFL) pumped by a 1064-nm continuous wave (CW) Nd:YVO4 solid-state laser is reported. 1.15-W CW output power at 1484 nm is obtained while the input pump power is 4 W, corresponding to the power conversion efficiency of 28.8%. The threshold pump power for the second-order Stokes radiation is 1.13 W. The slope efficiency is as high as 42.6%. The experimental results are in good agreement with theoretical ones. Furthermore, the power instability of the P-doped RFL at 1484 nm in an hour is observed to be less than 5%.  相似文献   

9.
An 880-nm laser-diode stack end-pumped cw 1342nm Nd:YVO4 slab laser with a compact positive confocal unstable-stable hybrid resonator is demonstrated. At absorbed pump power of 115 W, the output power 32.4 W is obtained. The slope efficiency and optical-to-optical conversion efficiency are 42% and 28.2%, respectively. At output power of 22 W, the stable direction M2 is 1.3 and the unstable direction M2 is 1.2.  相似文献   

10.
We report a new way, i.e. double-end-pumping, to extend the stability range of a laser resonator, in advantage of making the thermal loading be effectively divided between the ends of the laser crystal to reduce the thermal effect, thus to extend the stability range. Using this new way, we experimentally obtained a 2.7-W cw laser source at 671 nm by intracavity frequency doubling of 1342nm ofa Nd:YVO4 laser based on the nonlinear crystal LIB3O5. The maximum pump power is 28 W, which is higher than 13 W of the single-end-pumping.  相似文献   

11.
We demonstrate the efficient generation of red light at 671nm and blue light at 447nm from a diode-pumped Q-switched 1342nm Nd: YVO4 laser together with a periodically poled LiTaO3 (PPLT) crystal. The sample used in this experiment is a dual-structure PPLT crystal with the period of 14.9μm for the second harmonic generation and that of 4.9μm for the third harmonic generation. The red and blue light, with the respective average power of 752 m W and 153 m W were obtained in a single path under an average fundamental power of 1.74 W, corresponding to the conversion efficiencies of 43.2% and 8.8%, respectively. These results indicate that the dual-structure PPLT can be used to construct a compact and efficient all-solid-state red-and-blue dual-wavelength laser.  相似文献   

12.
周城 《中国物理快报》2006,23(9):2455-2457
The single-longitudinal-mode Nd:GdVO4/RTiOPO4 (RTP) solid-state Green laser operation of a laser-diode (LD) end-pumped laser is realized by multi-cavities and a Brewster plate. The LD-pumped single-frequency green laser has been demonstrated by optimizing several parameters and a cavity length, with precise temperature controlling of Nd:GdV04, RTP and laser diode. When the incident pump power is 2 W at 808.4 nm, a single-frequency cw green laser at 532nm with output 210 m W is obtained, the optical-to-optical conversion efficiency is up to 10.5%.  相似文献   

13.
We report a high power operation of the ^4Fa/2 → ^4I9/2 transition in diode-end-pumped laser at 946nm. The maximum output of 5.1 W is obtained with a short linear plano-concave cavity, and the slope efficiency is 24.5% at incident pump power of 23.3 W. To our knowledge, this is the highest value of the LD-pumped Nd:YAG 946 nm lasers that employ the conversional Nd:YAG rod as the gain medium. By intracavity frequency doubling with an LBO crystal, up to 982mW cw output power in the blue spectral range at 473nm is achieved at an incident pump power of 10.9 W with a compact three-element cavity, leading to optical-to-optical conversion efficiency of 9%. The conversion efficiency should be increased to 15.1%, if the rather low absorption coefficient of this Nd:YAG is considered.  相似文献   

14.
A widely tunable cw diode-pumped room-temperature Tm:GdVO4 laser is built. Output power of 2.8 W and a slope effic/ency of 22% pumped by a 18 W Fibre-coupled diode laser at 795nm have been obtained. Continuous tunability from 1820nm to 1946nm is achieved. In addition, the factors that contribute to the efficiency of oscillation are studied.  相似文献   

15.
A cw diode side-pumped Nd:YAO laser is frequency doubled to 532nm with an intracavity KTP crystal in a Vshaped arrangement, achieving an output power of 40 W corresponding to an optical-optical conversion efficiency of 9.7%. The instabilities and the M2-parameters of the laser are measured at different output powers after the beam is filtered.  相似文献   

16.
We design and build a cw high quality and high power Nd:YV04 laser of single frequencv operation with a laser-diode dual-end-pumped geometry. The influence of the Nd^3 -doping concentration in the Nd:YVO4 crystal on the output performance of laser is theoretically and experimentally studied. With a Nd:YVO4 crystal of the Nd^3 -doping concentration 0.3 at. % and at pump power of 45 W, the output power of the single frequency laser is 18 W, and the slope efficiency is 48%.  相似文献   

17.
A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063nm. Diode laser stacks at 880nm are used to pump Nd:GdVO4 into emitting level 4^F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optieal conversion efficiency is 38.2%. When the output power is 120 W, the M^2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.  相似文献   

18.
A folded four-mirror cavity with a composite Nd:YAG rod is optimized to obtain high efficient cw 473nm blue output. The laser could operate stably in the region of the thermal-lens focal length from 20mm to 70mm. LBO is used for intracavity frequency doubling of the 946nm transition of Nd:YAG and the optimum LBO length is investigated. A maximum output power of 2.1 Win the blue spectral range at 473nm is achieved with 30-mm-long LBO, corresponding to an optical conversion efficiency of 9.1%.  相似文献   

19.
We demonstrate a 511 W laser diode pumped composite Nd:YAG ceramic laser. The optical pumping system is consisted of five laser diode stacked arrays arranged in a pentagonal shape around the ceramic rod whose size is φ6.35×144mm. When the pumping power is 1600 W, the cw laser output up to 511 W at 1064nm can be obtained with a linear piano-piano cavity, and the optical-to-optical efficiency is 31.9%. To our knowledge, this is the highest value of laser output by using a newly invented composite Nd:YAG ceramic rod as the gain medium.  相似文献   

20.
We demonstrate the continuous wave p-polarized single longitudinal mode (SLM) operation of an Er:YAG laser at 1617.6nm pumped by a diode-laser with three inserted Fabry-Perot (FP) etalons at room temperature. The Brewster angle inserted FP is applied to obtain the p-polarized laser. For free running, the maximum output power is 570 m W with a pump power of 12.5 W. An incident pump power of 12.5 W is used to generate the maximum p-polarized single longitudinal mode output power of 78.5 m W, corresponding to a slope efficiency of 1.6% and an optical-to-optical efficiency of 0.61%. The beam quality M2 is measured to be 1.15 at the highest SLM output power. This stable polarized SLM oscillation is encouraging due to its application for an injection-locked system used as a master laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号