首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
兼含离子型取代基(羧烷基钠盐)和非离子型取代基(羟烷基)的羧烷基羟烷基纤维素(CAHAC)复醚,由于其结构特点和性能优点,已愈来愈广泛地为人们所重视[1-3]。有关其有机交联改性或无机交联改性的研究结果表明,在耐热增稠剂、耐盐吸水材料[4]、尤其是在油田开采化学方面,CAHAC都有很大的发展前途。  相似文献   

2.
To understand the bone formation ability of constituent metal elements of new titanium alloys, titanium, zirconium, niobium, and tantalum, these metals were immersed in various electrolytes containing calcium and/or phosphate ions and characterized using X‐ray photoelectron spectroscopy. In addition, cathodic polarization of the metals in the electrolytes was performed to evaluate the stability of the surface oxide films on the metals in the electrolyte. The calcium phosphate layer formed on Ti in electrolytes containing calcium and phosphate ions is relatively protective against mass transfer throughout the layer. However, the zirconium phosphate layer formed on Zr is much more protective and stable than that on Ti. Therefore, calcium ions were not incorporated. Nb and Ta formed calcium phosphate, but the amount was smaller than that in Ti, because phosphates formed on Nb and Ta are somewhat protective and the incorporation of the calcium ion is inhibited. Titanium played the most important role in forming calcium phosphate, while zirconium inhibited the formation of calcium phosphate on titanium alloys. The control of bone formation is feasible by the design of titanium alloys. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Whereby cholesterol presents one of the major fatty substances in human body, carboxymethyl cellulose is a water-soluble derivative of cellulose, the most abundant dietary fiber. Whereas on one hand in vivo precipitation of cholesterol is the major cause of atherosclerosis, dietary fibers are on the other hand known for their ability to clean the fatty plaque deposited on intestinal pathways, and prevent its build-up in other critical areas within the organism. In this work, a method for the preparation of a composite material comprising cholesterol and carboxymethyl cellulose from 1-hexanol/water biphase mixtures is reported. Specificity of the interaction between the composite components in the given conditions of synthesis inhibits the tendency of solid cholesterol to adopt typical plate- or needle-shaped morphologies. Instead, control of the thixotropic behavior of the constituent polymer phase leads to the formation of bubbling, multi-layered cholesteric films. In view of the major illnesses that involve biological precipitation of cholesterol crystals, these findings may be considered as pointing towards the interactional specificity of potential chemotherapeutic and/or nutritional significance. Scanning electron microscopy, thermal and diffractometric analyses were performed as parts of the characterization of the prepared material.  相似文献   

4.
Journal of Radioanalytical and Nuclear Chemistry - A zirconium molybdophosphate composite was designed for the selective recovery of uranium ions. The synthesized composite was well-characterized...  相似文献   

5.
Cellulose - Fast and facile preparation of composite films containing natural rubber and Eucalyptus cellulose microfiber was achieved by the addition of carboxyl methyl cellulose to yield advantage...  相似文献   

6.
The effects of the modification of supported platinum as a constituent of reforming Pt/Al2O3 and Pt-Re/Al2O3 catalysts by introducing zirconium, which was obtained from various starting compounds, into the composition of the support were studied. These effects were most pronounced if difficult-to-hydrolyze compounds served as a source of zirconium. It was found that zirconium affected the metal-support interaction strength, which is responsible for the formation of the most strongly adsorbed hydrogen species (over the temperature range of 300–500°C). This suggests a change in the electronic state of platinum under the action of zirconium. Platinum sites became more regular; as a result of this, the reaction rate parameters of heptane conversion changed.  相似文献   

7.
The structure of film composites based on methyl cellulose and fillers, such as montmorillonite and silver nanoparticles stabilized by poly(vinylpyrrolidone) (Poviargol), is studied by X-ray diffraction. In the composite, montmorillonite nanoparticles exist in the exfoliated state; when the content of the nanoparticles is below 7 wt %, the crystallinity of methyl cellulose increases. Owing to the presence of the filler and structural ordering of the matrix, elastic characteristics improve and the degradation temperature of the composites increases. The X-ray structural data show that the Ag particles in the methyl cellulose-Poviargol composite are 30 nm in size. The introduction of up to 20 wt % Poviargol assists the crystallization of methyl cellulose. The strength and strain characteristics of the film composites based on methyl cellulose and Poviargol make it possible to use these composites in medicine and agriculture.  相似文献   

8.
Highly flexible, optically transparent epoxy resin/cellulose composites were prepared by using the solution impregnation method firstly and then thermal cured. The composite contained 60 wt% resin was still mechanically stable and flexible, and it integrated the merits of cellulose and resin, but the highly hydrophilic behavior of cellulose has been reduced. Contact angle measurements with water demonstrated that the composite films had obvious hydrophobic properties, and a decrease in the water uptake and the permeability towards water vapor gas was also observed. The transmittance of the composite films at 550 nm was about 85–88 %. The thermal and mechanical properties of the composite films were improved. Moreover, the composite films could be used in UV imprint lithography for circuit, and the definition could be compared with that of widely used glass plate.  相似文献   

9.
合成了新型纳米银-磷酸锆复合材料并用其修饰玻碳电极,用循环伏安法对修饰电极进行电化学研究.结果表明,此复合膜保持了银的纳米尺寸的微粒性质和磷酸锆对碱性染料的电位调制能力.复合膜中的纳米银提高了磷酸锆对中性红的吸附能力,增强了中性红的氧化还原反应活性.复合膜修饰电极表现出更灵敏的电化学响应.复合膜比单纯的磷酸锆膜表现出更好的机械强度,用其制备的修饰电极表现出更好的稳定性.  相似文献   

10.
Selectivity sorption of phosphate, arsenate, and silicate anionic impurities from concentrated aqueous solutions of ammonium molybdate and tungstate by a composite sorbent consisting of macroporous KU-23 (or KM-2p) cation exchanger and hydrated zirconium oxide was studied.  相似文献   

11.
Cellulose nanomaterials review: structure, properties and nanocomposites   总被引:5,自引:0,他引:5  
This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).  相似文献   

12.
Cellulose, as a natural polymer with an abundant source, has been widely used in many fields including the electric field responsive medium that we are interested in. In this work, cellulose micron particles were applied as an electrorheological (ER) material. Because of the low ER effect of the raw cellulose, a composite particle of cellulose and Laponite was prepared via a dissolution–regeneration process. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to observe the morphologies and structures of the composite particles, which were different from pristine cellulose and Laponite, respectively. The ER performances of raw cellulose and the prepared composite were measured by an Anton Paar rotational rheometer. It was found that the ER properties of the composite were more superior to those of raw cellulose due to the flake-like shapes of the composite particles with rough surface. Moreover, the sedimentation stability of composite improves drastically, which means better suspension stability.  相似文献   

13.
Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To this end, bio-based composite hydrogels as sorbents have received extensive attention in recent years because of advantages such as high adsorptive capacity, controllable mechanical properties, cost effectiveness, and potential for upscaling in continuous flow installations. In this review, we aim to provide an up-to-date analysis of the literature on recent accomplishments in the design of polysaccharide-based composite hydrogels for removal of heavy metal ions, dyes, and oxyanions from wastewater. The correlation between the constituent polysaccharides (chitosan, cellulose, alginate, starch, pectin, pullulan, xanthan, salecan, etc.), engineered composition (presence of other organic and/or inorganic components), and sorption conditions on the removal performance of addressed pollutants will be carefully scrutinized. Particular attention will be paid to the sustainability aspects in the selected studies, particularly to composite selectivity and reusability, as well as to their use in fixed-bed columns and real wastewater applications.  相似文献   

14.
Microcrystalline cellulose/nano-SiO2 composite films have been successfully prepared from solutions in ionic liquid 1-allyl-3-methylimidazolium chloride by a facile and economic method. The microstructure and properties were investigated by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, transmission electron microscopy, water contact angle, thermal gravimetric analyses, and tensile testing. The results revealed that the well-dispersed nanoparticles exhibit strong interfacial interactions with cellulose matrix. The thermal stability and tensile strength of the cellulose nanocomposite films were significantly improved over those of pure regenerated cellulose film. Furthermore, the cellulose nanocomposite films exhibited better hydrophobicity and a lower degree of swelling than pure cellulose. This method is believed to have potential application in the field of fabricating cellulose-based nanocomposite film with high performance, thus enlarging the scope of commercial application of cellulose-based materials.  相似文献   

15.
A sorbent for water treatment to remove nitrates was prepared from readily available vegetable boipolymers: cellulose and starch. The adsorption characteristics of the polysaccharide composite were determined. Biodegradation of the spent composite in the course of its utilization was studied.  相似文献   

16.
In this work, cellulose–Ag@AgCl composite films have been fabricated directly through a one-step coagulation of a cellulose/1-butyl-3-methylimidazolium chloride (BmimCl) solution with AgNO3 and PVP. The AgCl was formed upon the addition of AgNO3 to a cellulose/BmimCl solution, and underwent further reaction with excess Cl?, leading to the complete dissolution of AgCl. The AgCl crystals were regenerated on the cellulose matrix during the coagulation process. The AgCl was partial decomposed to Ag0 and formed Ag@AgCl under visible light irradiation. The morphology of Ag@AgCl in the cellulose matrix was controlled by varying the concentration of PVP. The addition of PVP enabled the formation of stable cellulose films embedded with Ag@AgCl. The composite film demonstrated efficient photodegradation of methyl orange, which was retained upon recycling. This work thus provides a simple pathway for the preparation of Ag@AgCl embedded on a polymer support via one-step coagulation.  相似文献   

17.
Poly(epsilon-caprolactone) (PCL) composite samples were prepared by polymerization and direct molding. The starting compound was epsilon-caprolactone monomer liquid combined with cellulose and inorganic fillers, using aluminium triflate as a catalyst at 80 degrees C, for 6 or 24 h. Cylinder-shaped PCL composite samples with a homogeneously dispersed cellulose filler were prepared with (-)M(n) = 4 600 ((-)M(w)/(-)M(n) = 2.9). The mechanical properties of the PCL composite samples were studied using compression test methods. The strength of a PCL composite with 50 wt.-% cellulose filler (10.8 MPa) was found to be lower than the PCL sample without fillers (19.2 MPa). The biobased content of the PCL composite with 50 wt.-% cellulose filler (51.67%) measured using accelerated mass spectrometry (AMS) was slightly higher than the carbon ratio of cellulose in the starting powder samples (41.3 mol-%). The biobased content of the polymer composite powders by AMS was found not to be affected by the presence of inorganic fillers, such as talc. The rate and extent of biodegradation, caused by Amano Lipase PS, of the PCL composite sample with cellulose filler (40% degradation in 4 d) was the same as that of a PCL sample without the cellulose filler.  相似文献   

18.
The interaction in the zirconium hydrogen phosphate-polyaniline (PAN) system is studied using impedance and IR spectroscopy. Strong hydrogen bonds N-H...O and O-H...N are formed at the interface in this system. An appreciable increase in the ionic conductivity of composite materials based on zirconium hydrogen phosphate and PAN is discovered.  相似文献   

19.
Halloysite nanotubes (HNTs) were added to cellulose NaOH/urea solution to prepare composite hydrogels using epichlorhydrine crosslinking at an elevated temperature. The shear viscosity, mechanical properties, microstructure, swelling properties, cytocompatibility, and drug delivery behavior of the cellulose/HNT composite hydrogels were investigated. The viscosity of the composite solution increases with the addition of HNT. The compressive mechanical properties of composite hydrogels are significantly improved compared with pure cellulose hydrogel. The compressive strength of the composite hydrogels with 66.7% HNTs is 128 kPa, while that of pure cellulose hydrogel is only 29.8 kPa in compressive strength. Rheological measurement suggests the resistance to deformation is improved for composite hydrogels. X-ray diffraction and Fourier transform infrared spectroscopy show that the crystal structure and chemical structure of HNT are not changed in the composite hydrogels. Hydrogen bonding interactions between HNT and cellulose exist in the composites. A porous structure of the composite hydrogels with pore size of 200–400 μm was found by scanning electron microscopy. The addition of HNT leads to decreased swelling ratios in NaCl solution and pure water for the composite hydrogels. Cytotoxicity assays show that the cellulose/HNT composite hydrogels have a good biocompatibility with MC3T3-E1 cells and MCF-7 cells. Curcumin is further loaded into the composite hydrogel via physical adsorption. The curcumin-loaded composite hydrogels show a strong inhibition effect on the cancer cells. All the results illustrate that the cellulose/HNT composite hydrogels have promising applications such as anticancer drug delivery systems and anti-inflammatory wound dressings.  相似文献   

20.
Bulk hierarchical anatase‐titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre‐deposited filter paper to a solvo‐co‐hydrothermal treatment by using titanium butoxide as the precursor to grow anatase‐titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase‐titania nanoparticles with sizes of 2–5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase‐titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag‐NP/anatase‐titania/cellulose composite material possessing excellent antibacterial activity against both Gram‐positive and Gram‐negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号