首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the studies on the mechanism of oxidation of 3′,4′-dihydroxy-l-phenylalanine (l-DOPA) to neurotoxic dopachrome catalyzed by enzyme horseradish peroxidase (EC 1.11.1.7) using the kinetic (KIE), and solvent (SIE), isotope effect methods. For kinetic studies two specifically deuterated isotopomers: [2′,5′,6′-2H3]-l -DOPA was synthesized by the acid catalyzed isotopic exchange between native l-DOPA and heavy water, and [5′-2H]-l-DOPA was synthesized in two step reaction. The first step involved acid catalyzed isotopic exchange between l-tyrosine and deuterated water and resulting product [3′,5′-2H2]-l-tyrosine was hydroxylated by enzyme tyrosinase (EC 1.14.18.1). The values of deuterium KIEs and SIE’s in the enzymatic oxidation of l-DOPA and its isotopomers are determined using non-competitive spectrophotometric method. The measured values were: KIE on V max (1.1 and 2.2) and KIE on V max/K M (1.7 and 3.2) for [2′,5′,6′-2H3]-l-DOPA and [5′-2H]-l-DOPA, respectively, while the corresponding values of SIE were: SIE on V max (2.1, 2.4, and 2.1) and SIE on V max/K M (1.3. 1.6, and 1.1) for l-DOPA, [2′,5′,6′-2H3]-l-DOPA, and [5′-2H]-l-DOPA, respectively. The size of KIE and SIE, typical for secondary isotope effects indicate that both the solvent and presence of deuterium at the 2′-, 5′, and 6′-positions of l-DOPA has the little impact on the enzymatic oxidation of this compound.  相似文献   

2.
Fifteen carbohydrates (d-mannose, d-glucose, d-galactose, methyl-α-d-glucose, l-rhamnose, d-xylose, d-fructose, d-arabinose, dulcitol, mannitol, β-maltose, α-lactose, melibiose, sucrose, and raffinose) and four cyclitols [l-(+)-bornesitol, myo-inositol, per-O-acetyl-1-l-(+)-bornesitol, and quinic acid] were assayed for in vitro ACE inhibition. Of these molecules, per-O-Acetyl-1-l-(+)-bornesitol, quinic acid, methyl-α-d-glucose, d-rhamnose, raffinose, and the disaccharides were determined to be either inactive or weak ACE inhibitors, whereas l-(+)-bornesitol, d-galactose, d-glucose, and myo-inositol exhibited significant ACE inhibition. Molecular docking studies were performed to investigate interactions between active compounds and human ACE (Protein Data Bank, PDB 1O83). The results of various calculations showed that all active sugars bind to the same enzyme region, which is a tunnel directed towards the active site. With the exception of myo-inositol (K i = 13.95 μM, IC50 = 449.2 μM), the active compounds presented similar K i and IC50 values. d-Galactose (K i = 19.6 μM, IC50 = 35.7 μM) and l-(+)-bornesitol (K i = 25.3 μM, IC50 = 41.4 μM) were the most active compounds, followed by d-glucose (K i = 32.9 μM, IC50 = 85.7 μM). Our docking calculations are in agreement with the experimental data and show a new binding region for sugar-like molecules, which may be explored for the development of new ACE inhibitors.  相似文献   

3.
Three asterosaponins were isolated from the tropical starfish Asteropsis carinifera: a new one, asteropsiside A, and two known ones, regularoside A and thornasteroside A. The structure of the new compound was established using 2D NMR spectroscopy and ESI mass spectrometry as the sodium salt of 3-O-sulfonato-(20E)-6-O-{β-d-fucopyranosyl-(1→2)-β-d-galactopyranosyl-(1→4)-[β-d-quinovopyranosyl-(1→2)]-β-d-xylopyranosyl-(1→3)-β-d-quinovopyranosyl}-3β,6α-dihydroxy-5α-cholesta-9(11),20(22)-dien-23-one. Regularoside A and thornasteroside A were shown to display the ability to inhibit the growth of the T-47D and RPMI-7951 tumor cell colonies in vitro.  相似文献   

4.
Six secondary metabolites from the methanolic extract of Sweetia panamensis (Fabaceae) bark were isolated and characterised. Along with the pyrones desmethylangonine β-d-O-glucopyranoside and desmethylangonine β-d-O-glucopyranosyl-(1→6)-O-β-d-glucopyranoside, already reported in this species, 5-O-caffeoylquinic acid (chlorogenic acid), 4-O-caffeoylquinic acid, 3-O-caffeoylquinic acid and the isoflavonoid 5-O-methylgenistein 7-O-β-d-glucopyranoside were isolated for the first time from S. panamensis. Additionally, an LC-ESI-MS qualitative analysis was performed and an ultra performance liquid chromatography (UPLC) method was developed and validated for the determination of these compounds. The UPLC method was applied to the quantitative analysis of plant samples. Pyrones and caffeoylquinic acids resulted to be the main compounds in the extract; in particular desmethylangonine β-d-O-glucopyranosyl-(1→6)-O-β-d-glucopyranoside was the most abundant compound.  相似文献   

5.
Treatment of the natural tri-, tetra-, and pentasaccharides, β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, α-l-Fucp-(1→2)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, and α-l-Fucp-(1→2)-[α-d-GalNAcp-(1→3)]-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, which are glucose analogs of Lex, with ammonium carbamate in aqueous methanol gave the corresponding β-glycopyranosyl amines. After their N-acylation with N-Z-glycine N-hydroxysuccinimidyl ester (Z is benzyloxycarbonyl) with subsequent hydrogenolytic removal of Z-group, corresponding N-glycyl-β-glycopyranosyl amines were obtained in yields up to 70%.  相似文献   

6.
Carbohydrate recognition of some bioactive symmetrical tripodal receptor type tris(2-aminoethyl)amine (TAEA) derivatives was investigated. In calorimetric experiments, the highest binding constant (Ka) of compound C (C35H49N5O4S) with methyl α-d-mannopyranoside was Ka = 858 M?1 with 1:1 stoichiometry. Formation of hydrogen bonds in binding between symmetrical tripodal receptor type compound C and sugars was suggested by the large negative values of ?H° (=?34 to ?511 kJ mol?1). In a comparison of each set of α- and β-anomers of some monosaccharides (methyl α/β-d-galactopyranoside, methyl α/β-d-glucopyranoside, and methyl α/β-l-fucopyranoside), compound C showed that the binding constant of β-anomer was larger than that of the corresponding α-anomer, indicating higher β-anomer selectivity. The calculated energy-minimized structure of the complex of compound C with guest methyl α-d-mannopyranoside is also presented. The experimental results obtained from this work indicated that symmetrical tripodal receptor type TAEA derivative C has a lectin-like carbohydrate recognition property.  相似文献   

7.
The racemisation ofcyclo-(l-Pro?l-Pro) (2) with metal amides in liq. ammonia was examined. The K-kation causes more extensive racemisation than Na-kation, which in turn is more effective than Li+. This, the racemisation of2 int-butyl alcohol with K+C6H5O? and the data gained from corresponding deuterated medium show that the racemisation of2 proceeds in two steps: in the first, the less stabletrans-cyclo-(l-Pro?d-Pro) (3) is formed, followed by the rapid conversion of3 to a mixture ofcyclo-(l-Pro?l-Pro) andcyclo-(d-Pro?d-Pro) in the second step.  相似文献   

8.
Nine isotopomers of tryptamine and its halogen derivatives, labeled with deuterium, tritium in side chain, i.e., [(1R)-2H]-, [(1R)-3H]-, 5-F-[(1R)-2H]-, 5-F-[(1R)-3H]-, 5-Br-[(1R)-2H]-, double labeled [(1R)-2H/3H]-, 5-F-[(1R)-2H/3H]-, and ring labeled [4-2H]-, and [5-2H]-tryptamine, were obtained by enzymatic decarboxylation of l-Trp and its appropriate derivatives in deuteriated or tritiated media, respectively. Intermediates: [5′-2H]-l-Trp used for further decarboxylation was synthesized by enzymatic coupling of [5-2H]-indole with S-methyl-l-cysteine, and [4′-2H]-l-Trp was obtained by isotope exchange 1H/2H of the authentic l-Trp dissolved in heavy water induced by UV-irradiation. Doubly labeled [(1R)-2H/3H]- and 5-F-[(1R)-2H/3H]-tryptamine were obtain by decarboxylation of l-Trp or [5′-F]-l-Trp carried out in 2H3HO incubation medium.  相似文献   

9.
Synthesis of 3″-deoxy and 4″-deoxy Lewisx trisaccharides is described. Phenyl 2,3,6-tri-O-benzoyl-4-deoxy-1-thio-β-d-xylo-hexopyranoside was condensed with a diol of glucosamine to give regio- and stereo-selectively a disaccharide. Stereoselective fucosylation of this disaccharide provided a protected deoxy Lewisx trisaccharide which was deprotected to give the 4″-deoxy Lewisx trisaccharide. Application of the similar synthetic sequence provided the 3″-deoxy Lewisx trisaccharide.  相似文献   

10.
S-(Carboxymethyl)-d-cysteine, which is an important component of semisynthetic cephalosporin, MT-141, was enzymatically synthesized.S-(Ethoxy-carbonyl-methyl)-d-cystein was synthesized from 3-chloro-d-alanine and ethyl thioglycolate by the β-replacement reaction of 3-chloro-d-alanine chloride-lyase fromPseudomonas putida CR 1-1 and subsequently hydrolyzed by alkali. The synthesizedS-(carboxymethyl)-d-cysteine was isolated from a large scale reaction mixture and identified physicochemically. The reaction conditions for the synthesis ofS-(ethoxycarbonylmethyl)-d-cysteine were optimized using resting cells ofP. putida CR 1-1.  相似文献   

11.
High-speed counter-current chromatography (HSCCC)—a support free all liquid–liquid chromatography technique—has been successfully used for the preparative isolation of isorhamnetin 3-O-β-d-glucoside, isorhamnetin 3-O-β-rutinoside, quercetin 3-O-β-d-glucoside, syringetin 3-O-β-d-glucoside and protocatechuic acid from sea buckthorn juice concentrate (Hippophaë rhamnoides L. ssp. rhamnoides, Elaeagnaceae). The preparative HSCCC instrument was a multilayer coil planet centrifuge equipped with three preparative coils. Separation was performed with a two phase solvent system (n-hexane–n-butanol–water, 1:1:2 v/v/v) in ‘head-to-tail’ mode. Each injection of 4.1 g crude ethyl acetate extract yielded isorhamnetin 3-O-β-d-glucoside (95 mg), isorhamnetin 3-O-β-rutinoside (10 mg), quercetin 3-O-β-d-glucoside (5 mg), and protocatechuic acid (34 mg) with purities >98%. The flavonoid syringetin 3-O-β-d-glucoside (2 mg) was a novel compound for H. rhamnoides. Chemical structures of all compounds were determined by HPLC–ESI–MS–MS, 1D-NMR (1H, 13C, DEPT 135) spectroscopy and for elucidation of glycosidic linkages 2D-NMR (HMBC) spectroscopy was used.  相似文献   

12.
(R,S)-Atenolol was derivatized with Marfey’s reagent, (MR; 1-fluoro-2,4-dinitrophenyl-5-l-alanine amide or FDNP-l-Ala-NH2) and its four structural variants (FDNP-l-Phe-NH2, FDNP-l-Val-NH2, FDNP-l-Leu-NH2 and FDNP-l-Pro-NH2). MR reacts quantitatively with 1° and 2° amino groups and atenolol has a secondary amino group. The derivatization reactions were carried out under conventional and microwave heating and compared. The resulting diastereomers were separated on RP-TLC and on a C18 column with detection at 340 nm. (R)-Isomer eluted before (S). The conditions of derivatization and chromatographic separation were optimized. The method was validated for linearity, repeatability, limits of detection and limit of quantification.  相似文献   

13.
Glucose oxidase from Aspergillus niger, the specific enzyme for β-d-glucose oxidation, can also oxidize other related saccharides at very slow or negligible rates. The present study aimed to compare the kinetics of d-glucose oxidation using immobilized glucose oxidase on bead cellulose for the oxidation of related saccharides using the same biocatalyst. The significant differences were observed between the reaction rates for d-glucose and other saccharides examined. As a result, k cat/K M ratio for d-glucose was determined to be 42 times higher than d-mannose, 61.6 times higher than d-galactose, 279 times higher than d-xylose, and 254 times higher than for d-fructose and d-cellobiose. On the basis of these differences, the ability of immobilized glucose oxidase to remove d-glucose from d-cellobiose, d-glucose from d-xylose, and d-xylose from d-lyxose was examined. Immobilized catalase on Eupergit and mixed with immobilized glucose oxidase on bead cellulose or co-immobilized with glucose oxidase on bead cellulose was used for elimination of hydrogen peroxide from the reaction mixture. The accelerated elimination of d-glucose and d-xylose in the presence of co-immobilized catalase was observed. The co-immobilized glucose oxidase and catalase were able to decrease d-glucose or d-xylose content to 0–0.005% of their initial concentrations, while a minimum decrease of low oxidized saccharides d-xylose, d-cellobiose, and d-lyxose, respectively, was observed.  相似文献   

14.
A SnCl4-catalyzed reaction of 3-O-benzoyl-β-d-arabinofuranose 1,2,5-orthobenzoate with 4-(2-chloroethoxy)phenyl trimethylsilyl ether in dichloromethane gives linear arabinofuranose oligomers containing the 4-(2-chloroethoxy)phenyl aglycon.  相似文献   

15.
The effect of surface hydrophobicity and side-chain variation on xyloglucan adsorption onto cellulose microfibrils (CMF) is investigated via molecular dynamics simulations. A molecular model of CMF with (100), (010), (1–10), (110) and (200) crystal faces was built. We considered xylogluco-oligosaccharides (XGO) with three repeating units, namely (XXXG)3, (XXLG)3, and (XXFG)3 (where each (1,4)-β-d-glucosyl residue in the backbone is given a one-letter code according to its substituents: G = β-d-Glc; X = α-d-Xyl-(1,6)-β-d-Glc; L = β-d-Gal-(1,2)-α-d-Xyl-(1,6)-β-d-Glc; F = α-l-Fuc-(1,2)-β-d-Gal-(1,2)-α-d-Xyl-(1,6)-β-d-Glc). Our work shows that (XXXG)3 binds more favorably to the CMF (100) and (200) hydrophobic surfaces than to the (110), (010) and (1–10) hydrophilic surfaces. The origin of this behavior is attributed to the topography of hydrophobic CMF surface, which stabilizes (XXXG)3 in flat conformation. In contrast, on the rough hydrophilic CMF surface (XXXG)3 adopts a less favorable random-coil conformation to facilitate more hydrogen bonds with the surface. Extending the xyloglucan side chains from (XXXG)3 to (XXLG)3 hinders their stacking on the CMF hydrophobic surface. For (XXFG)3, the interaction with the hydrophobic surface is as strong as (XXXG)3. All three XGOs have similar binding to the hydrophilic surface. Steered molecular dynamics simulation was performed on an adhesive model where (XXXG)3 was sandwiched between two CMF hydrophobic surfaces. Our analysis suggests that this sandwich structure might help provide mechanical strength for plant cell walls. Our study relates to a recently revised model of primary cell walls in which extensibility is largely determined by xyloglucan located in limited regions of tight contact between CMFs.  相似文献   

16.
l-DOPA (3,4-dihydroxyphenyl-l-alanine), the most widely used drug for the treatment of Parkinson??s disease, was produced in buffer using biomass of Brevundimonas sp. SGJ. The effects of enhancers, such as carrageenan, diatomaceous earth, and activated charcoal, on the l-DOPA production were evaluated to obtain the maximum yield. The optimal process conditions found were pH?8, 2?g?l?1 cell mass, 2?g?l?1 l-tyrosine, 0.04?g?l?1 CuSO4, 0.02?g?l?1 l-ascorbic acid, 0.5?g?l?1 carrageenan, and 40?°C temperature. In addition, repeated use of cells resulted in the highest yield of 3.81?g?l?1 (95.2%) of l-DOPA with utilization of 4?g?l?1 l-tyrosine, and the highest tyrosinase activity (9,201?U?mg?1) was observed at 18?h of incubation. Furthermore, the produced l-DOPA was confirmed by high-performance thin-layer chromatography, high-performance liquid chromatography, and gas chromatography?Cmass spectroscopy. Kinetic studies showed significant values of Y p/s, Q s, and q s after optimization of the process. Thus, Brevundimonas sp. SGJ could be an eventual new source for large-scale production of l-DOPA.  相似文献   

17.
β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. Catalysis and inhibitor binding by the GH43 β-xylosidase are governed by the protonation states of catalytic base (D14, pK a 5.0) and catalytic acid (E186, pK a 7.2). Biphasic inhibition by triethanolamine of E186A preparations reveals minor contamination by wild-type-like enzyme, the contaminant likely originating from translational misreading. Titration of E186A preparations with triethanolamine allows resolution of binding and kinetic parameters of the E186A mutant from those of the contaminant. The E186A mutation abolishes the pK a assigned to E186; mutant enzyme binds only the neutral aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 19\,{\text{mM}}} \right) $ , whereas wild-type enzyme binds only the cationic aminoalcohol $ \left( {{\text{pH}} - {\text{independent}}\;K_{\text{i}}^{\text{triethanolamine}} = 0.065\,{\text{mM}}} \right) $ . At pH 7.0 and 25°C, relative kinetic parameter, $ k_{\text{cat}}^{\text{4NPX}}/k_{\text{cat}}^{\text{4NPA}} $ , for substrates 4-nitrophenyl-β-d-xylopyranoside (4NPX) and 4-nitrophenyl-α-l-arabinofuranoside (4NPA) of E186A is 100-fold that of wild-type enzyme, consistent with the view that, on the enzyme, protonation is of greater importance to the transition state of 4NPA whereas ring deformation dominates the transition state of 4NPX.  相似文献   

18.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was cloned and overexpressed in Lactococcus lactis using a phosphate-depletion-inducible expression system. The purified B. longum l-AI was characterized using d-galactose and l-arabinose as the substrates. The enzyme was active and stable at acidic pH with an optimum at pH 6.0?C6.5. The enzyme showed the highest activity at 55?°C during a 20-min incubation at pH 6.5. The K m value was 120?mM for l-arabinose and 590?mM for d-galactose. The V max was 42?U mg?1 with l-arabinose and 7.7?U mg?1 with d-galactose as the substrates. The enzyme had very low requirement for metal ions for catalytic activity, but it was stabilized by divalent metal ions (Mg2+, Mn2+). The enzyme bound the metal ions so tightly that they could not be fully removed from the active site by EDTA treatment. Using purified B. longum l-AI as the catalyst at 35?°C, equilibrium yields of 36?% d-tagatose and 11?% l-ribulose with 1.67?M d-galactose and l-arabinose, respectively, as the substrates were reached.  相似文献   

19.
The reactions of a racemic four-coordinate Ni(II) complex [Ni(rac-L)](ClO4)2 with l- and d-alanine in acetonitrile/water gave two six-coordinate enantiomers formulated as [Ni(RR-L)(l-Ala)](ClO4)·2CH3CN (1) and [Ni(SS-L)(d-Ala)](ClO4) (2) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclo-tetradecane, Ala? = alanine anion), respectively. Evaporation from the remaining solutions gave two four-coordinate enantiomers characterized as [Ni(SS-L)](ClO4)2 (S-3) and [Ni(RR-L)](ClO4)2 (R-3), respectively. Single-crystal X-ray diffraction analyses of complexes 1 and 2 revealed that the Ni(II) atom has a distorted octahedral coordination geometry, being coordinated by four nitrogen atoms of L in a folded configuration, plus one carboxylate oxygen atom and one nitrogen atom of l- or d-Ala? in mutually cis-positions. Complexes 1 and 2 are supramolecular stereoisomers, constructed via hydrogen bonding between [Ni(RR-L)(l-Ala)]+ or [Ni(SS-L)(d-Ala)]+ monomers to form 1D hydrogen-bonded zigzag chains. The homochiral natures of complexes 1 and 2 have been confirmed by CD spectroscopy.  相似文献   

20.
Thioglycosides derivatives of N-phenylmaleimide have been prepared by the reaction of derivatives of 1-thio-d-glucopyranose, d-galactopyranose, d-lactose, and d-maltose with 3,4-dichloro-N-phenylmaleimide. The reaction of 3,4-dichloro-N-phenyl maleimide with sugar thiols (protected or unprotected) took place by displacement of both chlorine atoms by sulfide nucleophile giving the corresponding bis-thioglycoside products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号