首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide reforming of methane to synthesis gas was studied over Ni/MgO-Al2O3-AlPO4 catalysts. The conventional Ni/Al2O3 and Ni/MgO-Al2O3 catalysts were included for comparison. These catalysts were characterized by nitrogen adsorption and hydrogen chemisorption. The results show that Ni/MgO-Al2O3-AlPO4 was more active than the other two catalysts especially at high reaction temperatures. MgO-Al2O3-AlPO4 has a large pore diameter with a very uniform pore size distribution. It can overcome the pore diffusion effect under high temperature reaction conditions.  相似文献   

2.
The vapour phase selective oxidation of 4-methylanisole to anisaldehyde was investigated over different V2O5 /MgO-Al2O3 catalysts at 673 K and normal atmospheric pressure. Among various catalysts investigated the 16 wt% V2O5 /MgO-Al2O3 catalyst provided good conversion and product selectivity. The MgO-Al2O3 mixed oxide was obtained by a co-precipitation method and V2O5 was impregnated from ammonium metavanadate. The MgO-Al2O3 support and various V2O5 /MgO-Al2O3 catalysts were characterized by means of X-ray diffraction, FT-infrared, electron spin resonance, scanning electron microscopy, ammonia and carbon dioxide chemisorption methods. The characterization results suggest that vanadia does not form layer structures on the support surface, instead interacts very strongly with the support, in particular with MgO, and forms amorphous compounds. The NH3 and CO2 uptake results provide an interesting information on the acid-base characteristics of these catalysts and correlate with their catalytic properties.  相似文献   

3.
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2− and S2−2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475–0.525 exhibited optimal catalytic activity for the reaction.  相似文献   

4.
Summary Au/Al2O3catalysts modified by MgO were tested in CO oxidation using temperature programmed technique. Contrary to Au/Al2O3the modified Au/MgO-Al2O3catalysts showed high activity in the sub-ambient and ambient temperature ranges.  相似文献   

5.
MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-Al2O3 catalysts were investigated. The synthesized catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TPO and TPR techniques. The obtained results showed that increasing nickel loading decreased the BET surface area and increased the catalytic activity and amount of deposited carbon. In addition, the effect of gas hourly space velocity (GHSV) and feed ratio were studied.  相似文献   

6.
The effects of CeO2 and CaO composite promoters on the properties of eggshell Ni/MgO-Al2O3 catalysts of 1.5 mm diameter for the partial oxidation of methane to syngas were investigated. The addition of 1wt.% promoters could enhance the catalytic performance of the Ni/MgO-Al2O3 catalyst, while further increasing the promoter content to 4wt.% results in the decrease of reactivity. The catalytic property is related to the oxidizability of surface nickel species.  相似文献   

7.
Natural gas resources, stimulate the method of catalytic methane decomposition. Hydrogen is a superb energy carrier and integral component of the present energy systems, while carbon nanotubes exhibit remarkable chemical and physical properties. The reaction was run at 700 °C in a fixed bed reactor. Catalyst calcination and reduction were done at 500 °C. MgO, TiO2 and Al2O3 supported catalysts were prepared using a co‐precipitation method. Catalysts of different iron loadings were characterized with BET, TGA, XRD, H2‐TPR and TEM. The catalyst characterization revealed the formation of multi‐walled nanotubes. Alternatively, time on stream tests of supported catalyst at 700 °C revealed the relative profiles of methane conversions increased as the %Fe loading was increased. Higher %Fe loadings decreased surface area of the catalyst. Iron catalyst supported with Al2O3 exhibited somewhat higher catalytic activity compared with MgO and TiO2 supported catalysts when above 35% Fe loading was used. CH4 conversion of 69% was obtained utilizing 60% Fe/Al2O3 catalyst. Alternatively, Fe/MgO catalysts gave the highest initial conversions when iron loading below 30% was employed. Indeed, catalysts with 15% Fe/MgO gave 63% conversion and good stability for 1 h time on stream. Inappropriateness of Fe/TiO2 catalysts in the catalytic methane decomposition was observed.  相似文献   

8.
XMo6(S)/γ-Al2O3 and Ni-XMo6(S)/γ-Al2O3 catalysts based on Anderson heteropoly compounds (HPCs), where X = Al, Ga, In, Fe, Co, and Ni, were synthesized. The nature of the precursor HPC determines the activity of the catalysts in thiophene hydrogenolysis and diesel fuel hydrorefining in a flow-through setup. The activity of Ni-XMo6(S)/γ-Al2O3 with X = Al, Ga, and In in diesel fuel dehydrosulfurization increases in the order Al < Ga < In. For catalysts in which the heteroatom is an element of the iron triad, the order of the increasing activities is Fe < Co < Ni. The highest activity in both reactions was observed for catalysts based on InMo6-HPC and NiMo6-HPC: the residual sulfur in the hydrogenizates obtained over them at 320°C was 2.5 times lower than over a conventional ammonium paramolybdate-based catalyst, whereas the degree of hydrogenation of polycyclic aromatic hydrocarbons (PAH) was 15–16 rel. % higher.  相似文献   

9.
FeOx, TiO2, and Fe–Ti–Ox catalysts were synthesized and used in the catalytic hydrolysis of hydrogen cyanide (HCN). Nearly 100% HCN conversion was achieved at 250 °C over the Fe–Ti–Ox catalyst. TiO2 rutile was detected over TiO2, but not over Fe–Ti–Ox, which suggested that the interaction between Fe and Ti species could inhibit the TiO2 phase transition. Furthermore, the interaction between Fe and Ti species over Fe–Ti–Ox could promote the selectivity of NH3 and CO. The mechanism of hydrolysis of HCN over FeOx, TiO2, and Fe–Ti–Ox can be given as follows: HCN + H2O → methanamide → ammonium formate → formic acid → H2O + CO.  相似文献   

10.
Oxathioacetalization of carbonyl compounds and transoxathioacetalization of O,O-acetals/ketals are reported under nearly neutral conditions promoted by iron(III) trifluoroacetate [Fe(CF3CO2)3] or trifluoromethanesulfonate [Fe(CF3SO3)3] as recyclable and highly efficient Lewis acid catalysts.  相似文献   

11.
Compacted and water saturated bentonite will be used as an engineered barrier in deep geological repositories for radioactive waste in many countries. Due to the high dose rate of ionizing radiation outside the canisters holding the nuclear waste, radiolysis of the interlayer and pore water in the compacted bentonite is unavoidable. Upon reaction with the oxidizing and reducing species formed by water radiolysis (OH, e(aq), H, H2O2, H2, HO2, H3O+), the overall redox properties in the bentonite barrier may change. In this study the influence of γ-radiation on the structural Fe(II)/FeTot ratio in montmorillonite and its reactivity towards hydrogen peroxide (H2O2) was investigated in parallel experiments. The results show that under anoxic conditions the structural Fe(II)/FeTot ratio of dispersed Montmorillonite increased from ≤3 to 25-30% after γ-doses comparable to repository conditions. Furthermore, a strong correlation between the structural Fe(II)/FeTot ratio and the H2O2 decomposition rate in montmorillonite dispersions was found. This correlation was further verified in experiments with consecutive H2O2 additions, since the structural Fe(II)/FeTot ratio was seen to decrease concordantly. This work shows that the structural iron in montmorillonite could be a sink for one of the major oxidants formed upon water radiolysis in the bentonite barrier, H2O2.  相似文献   

12.
Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth's nitrogen cycle, which requires efficient and stable catalysts to reduce the overpotential. The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal (TM) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pd, Ag, Cd, and Au) single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory (DFT). The end-on N2 adsorption was more energetically favorable, and the negative free energies represented good N2 activation performance, especially in the presence Fe/Ti3C2O2 (?0.75 eV). The overpotentials of Fe/Ti3C2O2, Co/Ti3C2O2, Ru/Ti3C2O2, and Rh/Ti3C2O2 were 0.92, 0.89, 1.16, and 0.84 eV, respectively. The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV. Two possible potential-limiting steps may be involved in the process: (i) hydrogenation of N2 to *NNH and (ii) hydrogenation of *NH2 to ammonia. These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier. It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential, which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis.  相似文献   

13.
Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe‐N‐C structure and four‐times higher ORR activity loss when performing load cycling AST in O2‐ vs. Ar‐saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load‐cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X‐ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions.  相似文献   

14.
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char-acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the ex-istence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/SiO2 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SiO2 con-tains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for-mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts,Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demon-strating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silica-supported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.  相似文献   

15.
Selective catalytic reduction of campholenic aldehyde to naturanol was investigated over Sn-and Fe-doped SiO2, and Fe2O3-supported Pd catalysts. On Pd/SiO2 and Pd-Sn/SiO2 only saturated campholenic aldehyde is formed. Addition of Fe increases the C=O hydrogenation rate producing the corresponding unsaturated alcohol with a good selectivity. Also Fe2O3-supported catalysts were found to be more selective towards carbonyl hydrogenation. Addition of tin to Pd/Fe2O3 contributes to a further selectivity enhancement towards naturanol.  相似文献   

16.
ACo_2O_4/HZSM-5催化剂上N_2O的直接分解   总被引:1,自引:0,他引:1  
分别采用柠檬酸络合燃烧法和低温络合浸渍法制备尖晶石型复合金属氧化物催化剂ACo2O4(A=Mg,Ni,Zn)和分子筛负载尖晶石型复合金属氧化物催化剂ACo2O4/HZSM-5(A=Mg,Fe,Ni,Cu,Zn,Zr,La).采用X射线衍射(XRD)、氨程序升温脱附(NH3-TPD)、扫描电子显微镜(SEM)和X射线能谱(EDS)等手段对催化剂进行表征,并在固定床微型反应器中评价其催化分解N2O活性.实验结果表明,A位离子种类影响ACo2O4/HZSM-5催化剂活性,以Ni、Fe、Zr或La为A位离子时,催化剂的活性较好,N2O分解温度低.ACo2O4/HZSM-5催化剂的活性高于ACo2O4尖晶石型复合氧化物,一方面是ACo2O4在分子筛HZSM-5载体上高度分散,使其以超细颗粒形态存在,另一方面ACo2O4/HZSM-5催化剂具有适宜的酸性,可提高催化剂的活性.  相似文献   

17.
Hydrogen was produced over noble metal (Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4 H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol.  相似文献   

18.
Lili ZHAO  Guangrong LIU  Jinlin LI   《催化学报》2009,30(7):637-642
A series of La2O3-promoted precipitated iron catalysts (100Fe/2.8Si/nLa, n = 0, 0.5, 1, 2, and 4, atomic ratio) were prepared and characterized by in situ X-ray diffraction, CO temperature-programmed reduction, and N2 adsorption-desorption. The catalytic performance for Fischer-Tropsch synthesis was studied in a fixed-bed reactor. It was found that the addition of a small amount of La2O3 (La/Fe ≤ 0.01) gave a large decrease in the particle size of Fe2O3, which increased the specific surface area and dispersion of the catalysts. This also favored the formation of iron carbides, which gave a high catalytic activity in Fischer-Tropsch synthesis. With increasing La2O3 content (La/Fe ≥ 0.02), a high La2O3 coverage and the formation of a LaFeO3 compound decreased the formation of iron carbides, and the reaction activity decreased. The optimum La2O3 content was La/Fe = 0.01. The addition of La2O3 increased the selectivity for methane and suppressed the formation of C5+ hydrocarbons.  相似文献   

19.
Fe-N-C catalysts containing atomic FeNx sites are promising candidates as precious-metal-free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe-N-C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe-N-C structure and four-times higher ORR activity loss when performing load cycling AST in O2- vs. Ar-saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load-cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X-ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions.  相似文献   

20.
Metal‐support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal‐support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal‐oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2O3 coats, Pt, and a thick Al2O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt–Al2O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2O3 nanotubes retain the stability for hydrogenation reactions of 4‐nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号