首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In many realistic scheduling settings a job processed later consumes more time than the same job processed earlier – this is known as scheduling with deteriorating jobs. Most research on scheduling with deteriorating jobs assumes that the actual processing time of a job is an increasing function of its starting time. Thus a job processed late may incur an excessively long processing time. On the other hand, setup times occur in manufacturing situations where jobs are processed in batches whereby each batch incurs a setup time. This paper considers scheduling with deteriorating jobs in which the actual processing time of a job is a function of the logarithm of the total processing time of the jobs processed before it (to avoid the unrealistic situation where the jobs scheduled late will incur excessively long processing times) and the setup times are proportional to the actual processing times of the already scheduled jobs. Under the proposed model, we provide optimal solutions for some single-machine problems.  相似文献   

2.
In many realistic scheduling settings a job processed later consumes more time than when it is processed earlier – this phenomenon is known as scheduling with deteriorating jobs. In the literature on deteriorating job scheduling problems, majority of the research assumed that the actual job processing time of a job is a function of its starting time. In this paper we consider a new deterioration model where the actual job processing time of a job is a function of the processing times of the jobs already processed. We show that the single-machine scheduling problems to minimize the makespan and total completion time remain polynomially solvable under the proposed model. In addition, we prove that the problems to minimize the total weighted completion time, maximum lateness, and maximum tardiness are polynomially solvable under certain agreeable conditions.  相似文献   

3.
Scheduling with learning effect and deteriorating jobs has become more popular. However, most of the research assume that the setup time is negligible or a part of the job processing time. In this paper, we propose a model where the deteriorating jobs, the learning effect, and the setup times are present simultaneously. Under the proposed model, the setup time is past-sequence-dependent and the actual job processing time is a general function of the processing times of the jobs already processed and its scheduled position. We provide the optimal schedules for some single-machine problems.  相似文献   

4.
Scheduling with deteriorating jobs and learning effects has been widely studied. However, multi-agent scheduling with simultaneous considerations of deteriorating jobs and learning effects has hardly been considered until now. In view of this, we consider a two-agent single-machine scheduling problem involving deteriorating jobs and learning effects simultaneously. In the proposed model, given a schedule, we assume that the actual processing time of a job of the first agent is a function of position-based learning while the actual processing time of a job of the second agent is a function of position-based deterioration. The objective is to minimize the total weighted completion time of the jobs of the first agent with the restriction that no tardy job is allowed for the second agent. We develop a branch-and-bound and several simulated annealing algorithms to solve the problem. Computational results show that the proposed algorithms are efficient in producing near-optimal solutions.  相似文献   

5.
同时具有学习效应和退化效应的单机排序问题   总被引:1,自引:0,他引:1  
本文给出了一种同时具有一般化学习效应和退化效应的单机排序模型。在此模型中,工件的实际加工时间既与工件所在位置又与其开工时间有关,且工件在加工之后具有一个配送时间。其中学习效应是工件所在位置的函数,退化效应是工件开工时间的函数。证明了极小化最大完工时间和极小化总完工时间问题是多项式可解的,在满足一定的条件下,极小化加权总完工时间和极小化最大延误问题也是多项式可解的。推广了一些已有文献中的结论。  相似文献   

6.
研究带有准备时间的单机学习效应模型,其中工件加工时间具有指数时间学习效应,即工件的实际加工时间是已经排好的工件加工时间的指数函数。学习效应模型考虑工件的实际加工时间同时依赖于工件本身的加工时间和已加工工件的累计加工时间,目标函数为最小化总完工时间。这个问题是NP-难的,提出了一个数学规划模型来求解该问题的最优解。通过分析几个优势性质和下界,提出分支定界算法来求解此问题,并设计启发式算法改进分支定界算法的上界值。通过仿真实验验证了分支定界算法在求解质量和时间方面的有效性。  相似文献   

7.
In this paper we consider the flow shop scheduling problems with the effects of learning and deterioration. In this model the processing times of a job is defined as a function of its starting time and position in a sequence. The scheduling objective functions are makespan and total completion time. We prove that even with the introduction of learning effect and deteriorating jobs to job processing times, some special flow shop scheduling problems remain polynomially solvable.  相似文献   

8.
This paper considers single machine scheduling problems with group technology (GT) and deteriorating jobs. A sequence independent setup is required to process a job from a different group and jobs in each group are processed together. We consider the case of jobs whose processing times are a decreasing function of their starting time. The objectives of scheduling problems are to minimize the makespan and the total completion time, respectively. We also provide polynomial time algorithms to solve these problems.  相似文献   

9.
In many situations, the skills of workers continuously improve when repeating the same or similar tasks. This phenomenon is known as the “learning effect” in the literature. In most studies, the learning phenomenon is implemented by assuming the actual job processing time is a function of its scheduled position [D. Biskup, Single-machine scheduling with learning considerations, Eur. J. Oper. Res. 115 (1999) 173–178]. Recently, a new model is proposed where the actual job processing time depends on the sum of the processing times of jobs already processed [C. Koulamas, G.J. Kyparisis, Single-machine and two-machine flowshop scheduling with general learning functions, Eur. J. Oper. Res. 178 (2007) 402–407]. In this paper, we extend their models in which the actual job processing time not only depends on its scheduled position, but also depends on the sum of the processing times of jobs already processed. We then show that the single-machine makespan and the total completion time problems remain polynomially solvable under the proposed model. In addition, we show that the total weighted completion time has a polynomial optimal solution under certain agreeable solutions.  相似文献   

10.
Scheduling with learning effects has received growing attention nowadays. A well-known learning model is called ‘position-based learning’ in which the actual processing time of a job is a non-increasing function of its position to be processed. However, the actual processing time of a given job drops to zero precipitously as the number of jobs increases. Motivated by this observation, we propose two truncated learning models in single-machine scheduling problems and two-machine flowshop scheduling problems with ordered job processing times, respectively, where the actual processing time of a job is a function of its position and a control parameter. Under the proposed learning models, we show that some scheduling problems can be solved in polynomial time. In addition, we further analyse the worst-case error bounds for the problems to minimize the total weighted completion time, discounted total weighted completion time and maximum lateness.  相似文献   

11.
The paper deals with machine scheduling problems with a general learning effect. By the general learning effect, we mean that the actual processing time of a job is not only a non-increasing function of the total weighted normal processing times of the jobs already processed, but also a non-increasing function of the job’s position in the sequence, where the weight is a position-dependent weight. We show that even with the introduction of a general learning effect to job processing times, some single machine scheduling problems are still polynomially solvable under the proposed model. We also show that some special cases of the flow shop scheduling problems can be solved in polynomial time.  相似文献   

12.
In this paper we consider the single machine scheduling problems with sum-of-logarithm-processing-times based and position based learning effects, i.e., the actual job processing time of a job is a function of the sum of the logarithms of the processing times of the jobs already processed and its position in a sequence. The logarithm function is used to model the phenomenon that learning as a human activity is subject to the law of diminishing return. We show that even with the introduction of the proposed model to job processing times, several single machine problems remain polynomially solvable.  相似文献   

13.
《Applied Mathematical Modelling》2014,38(21-22):5231-5238
In this study we consider unrelated parallel machines scheduling problems with learning effect and deteriorating jobs, in which the actual processing time of a job is a function of joint time-dependent deterioration and position-dependent learning. The objective is to determine the jobs assigned to corresponding each machine and the corresponding optimal schedule to minimize a cost function containing total completion (waiting) time, total absolute differences in completion (waiting) times and total machine load. If the number of machines is a given constant, we show that the problems can be solved in polynomial time under the time-dependent deterioration and position-dependent learning model.  相似文献   

14.
研究了具有线性恶化工件的单机排序问题,其中线性恶化工件指的是工件的加工时间是开工时间的线性增长函数.在一般情况下,对目标函数为极小化完工时间平方和与极小化总误工数问题分别给出了最优算法.此外,在分段情况下,对目标函数为极小化最大完工时间问题也给出了最优算法.  相似文献   

15.
In this paper we consider a single machine scheduling problem with deteriorating jobs. By deteriorating jobs, we mean that the processing time of a job is a simple linear function of its execution starting time. For the jobs with chain precedence constraints, we prove that the weighted sum of squared completion times minimization problem with strong chains and weak chains can be solved in polynomial time, respectively.  相似文献   

16.
The paper deals with the single machine scheduling problems with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the processing time of a job is defined by function of its starting time and total normal processing time of jobs in front of it in the sequence. It is shown that even with the introduction of a time-dependent learning effect and deteriorating jobs to job processing times, the single machine makespan minimization problem remain polynomially solvable. But for the total completion time minimization problem, the classical shortest processing time first rule or largest processing time first rule cannot give an optimal solution.  相似文献   

17.
We consider a new model of time-dependent scheduling. A set of deteriorating jobs has to be processed on a single machine which is available starting from a non-zero time. The processing times of some jobs from this set are constant, while other ones are either proportional or linear functions of the job starting times. The applied criteria of schedule optimality include the maximum completion time, the total completion time, the total weighted completion time, the maximum lateness and the number of tardy jobs. We delineate a sharp boundary between computationally easy and difficult problems, showing polynomially solvable and NP-hard cases.  相似文献   

18.
In this paper parallel identical machines scheduling problems with deteriorating jobs and learning effects are considered. In this model, job processing times are defined by functions of their starting times and positions in the sequence. We concentrate on two goals separately, namely, minimizing a cost function containing total completion time and total absolute differences in completion times; minimizing a cost function containing total waiting time and total absolute differences in waiting times. We show that the problems remain polynomially solvable under the proposed model.  相似文献   

19.
In this paper, we bring into the scheduling field a general learning effect model where the actual processing time of a job is not only a general function of the total actual processing times of the jobs already processed, but also a general function of the job’s scheduled position. We show that the makespan minimization problem and the sum of the kth power of completion times minimization problem can be solved in polynomial time, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

20.
In this paper we study some single-machine scheduling problems with learning effects where the actual processing time of a job serves as a function of the total actual processing times of the jobs already processed and of its scheduled position. We show by examples that the optimal schedules for the classical version of problems are not optimal under this actual time and position dependent learning effect model for the following objectives: makespan, sum of kth power of the completion times, total weighted completion times, maximum lateness and number of tardy jobs. But under certain conditions, we show that the shortest processing time (SPT) rule, the weighted shortest processing time (WSPT) rule, the earliest due date (EDD) rule and the modified Moore’s Algorithm can also construct an optimal schedule for the problem of minimizing these objective functions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号