首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.  相似文献   

2.
3.
Experimentally and theoretically were studied the physical properties of 19 new Schiff’s bases and their different protonated forms, depending on reaction conditions. It was elucidated the correlation between the type of molecular architecture, substituents and pH of the medium on first hyperpolarizability (β) with regard to the potential application of these compounds as organic nonlinear optical materials. The structure and optical properties were also studied, comparing quantum chemical data and experimental results from the mass spectrometry, electronic absorption, diffuse reflectance, and fluorescence spectroscopy, vibrational spectroscopy in condense phase, nuclear magnetic resonance, as well as thermal methods.  相似文献   

4.
Garth J Simpson 《Chemphyschem》2004,5(9):1301-1310
Recent observations of remarkably large chiroptical effects in second-harmonic generation (SHG) and sum-frequency generation (SFG) measurements suggest exciting possibilities for the development of new chiral-specific spectroscopies and novel chiral materials for nonlinear optics. Several fundamental studies designed to elucidate the molecular and macromolecular origins of the chiral responses are reviewed to provide a framework for development of this emerging field. In general, the chiral activity in SHG and SFG has the potential to arise from complex interactions between hosts of different competing effects. Fortunately, relatively simple electric dipole-allowed mechanisms routinely dominate the nonlinear optical chiral activities of most practical systemsexpressions can often be generated to link the. This substantial reduction in complexity allows for the development of simple models connecting the macroscopic nonlinear optical response to intuitive molecular and supramolecular properties.  相似文献   

5.
采用胶体化学法制备了四种表面修饰有不同有机功能团的CdS量子点(QDs),利用透射电子显微镜(TEM)、紫外-可见(UV-Vis)吸收光谱、光致发光(PL)光谱、开孔Z扫描技术分别研究了四种CdS样品的线性光学和非线性光学性能.结果表明:颗粒大小、表面形貌和缺陷浓度是影响CdS QDs非线性光学性能的主要因素.  相似文献   

6.
Nonlinear optical properties are a sensitive probe of the electronic and solid-state structure of organic compounds and as a consequence find various applications in many areas of optoelectronics including optical communications, laser scanning and control functions, and integrated optics technology. Because of their strongly delocalized π electronic systems, polymeric and non-polymeric aromatic compounds show highly nonlinear optical effects. Nowadays, polymer chemists are able to tailor specific materials properties for various applications. Some organic substances with π electronic systems exhibit the largest known nonlinear coefficients, often considerably larger than those of the more conventional inorganic dielectrics and semiconductors, and thus show promise for thin-film fabrication, allowing the enormous function and cost advantages of integrated electronic circuitry. The electronic origins of nonlinear optical effects in organic π electronic systems are reviewed, with special emphasis being given to second-order nonlinear optical effects. Methods for measuring nonlinear optical responses are outlined, and the critical relationships of the propagation characteristics of light to observed nonlinear optical effects and to solid-state structure are discussed. Finally, the synthesis and characterization of organic crystals and polymer films with large second-order optical nonlinearities are summarized.  相似文献   

7.
Sum frequency generation (SFG) vibrational spectroscopy has been proved to be a powerful technique which substantially impacts on many research areas in surface and interfacial sciences. This paper reviews the recent progress of applying this nonlinear optical technique in the studies of polymer surfaces and interfaces. The theoretical background of SFG is introduced first. Current applications of SFG in polymer science are then described in more detail to demonstrate the significance of this technique. Finally, a short summary is presented on this relatively new but widely applicable spectroscopic technique.  相似文献   

8.
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), ζ-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
We report the first observation of sum frequency generation (SFG) photons on high-surface-area powders, critically important materials in heterogeneous catalysis. We utilize SFG in total internal reflection (TIR) geometry and show that the TIR-SFG approach markedly reduces the destructive interference associated with nonlinear optical spectroscopy of small particle surfaces, making SFG studies of high-surface-area powders possible. The index of refraction of materials and their distance from the TIR-SFG prism are key parameters in generating and detecting the sum frequency signal. We find that TIR-SFG is highly sensitive to capillary condensation. To demonstrate the capability of the TIR-SFG technique, we measure the thermodynamics of methanol adsorption and desorption on high-surface-area SiO2.  相似文献   

10.
The development of nanotechnology using organic materials is one of the most intellectually and commercially exciting stories of our times. Advances in synthetic chemistry and in methods for the investigation and manipulation of individual molecules and small ensembles of molecules have produced major advances in the field of organic nanomaterials. The new insights into the optical and electronic properties of molecules obtained by means of single-molecule spectroscopy and scanning probe microscopy have spurred chemists to conceive and make novel molecular and supramolecular designs. Methods have also been sought to exploit the properties of these materials in optoelectronic devices, and prototypes and models for new nanoscale devices have been demonstrated. This Review aims to show how the interaction between synthetic chemistry and spectroscopy has driven the field of organic nanomaterials forward towards the ultimate goal of new technology.  相似文献   

11.
Two-dimensional materials have recently attracted attention due to their unique physical properties and promising applications. This work reports the electronic, linear and second-order nonlinear optical properties of aluminum nitride (AlN) monolayer by using a real-time first-principles approach based on Green's function theory. In this approach, quasi-particle corrections, crystal local field effects, and excitonic contributions are considered for investigating the linear and nonlinear responses. As a two-dimensional material with a wide direct gap of around 6.45 eV, the AlN monolayer exhibits strong resonances of absorption and second-harmonic spectra in the ultraviolet range. In the transparent spectral range from blue to deep ultraviolet (2.8–5.3 eV), strong peaks of second-order nonlinear susceptibility appear in the AlN monolayer with a large peak value of around 430 pm/V, which is one or two orders-of-magnitude larger than the nonlinear materials used in the ultraviolet range. The results presented in this work will find important applications for nonlinear imaging, spectroscopy, and nonlinear nanophotonics in the ultraviolet range.  相似文献   

12.
The equilibrium geometries of four asymmetric spirosilabifluorene derivatives are optimized by means of the DFT/B3LYP method with the 6-31G* basis sets in this paper. On the basis of the optimized structures, the electronic structure and second-order nonlinear optical properties are calculated by using time-dependent density-functional theory (TDDFT) based on the 6-31G* level combined with the sum-over-states (SOS) method. The results show that these compounds possess remarkably larger molecular second-order polarizabilities than typical organometallic and organic compounds, and replacement of a carbon atom with nitrogen within the conjugated substituent has a great influence on the second-order nonlinear optical properties. Analysis of the main contributions to the second-order polarizability suggests that charge transfer from the z-axis directions plays a key role in the nonlinear optical response. These compounds have a possibility to be excellent second-order nonlinear optical (NLO) materials from the standpoint of large beta values, small dipole moment, high transparency, and small dispersion behaviors.  相似文献   

13.
Here, we demonstrate how sum frequency generation (SFG), a vibrational spectroscopy based on a nonlinear three‐photon mixing process, may provide a direct and unique fingerprint of bio‐recognition; This latter can be detected with an intrinsically discriminating unspecific adsorption, thanks to the high sensitivity of the second‐order nonlinear optical (NLO) response to preferential molecular orientation and symmetry properties. As a proof of concept, we have detected the biological event at the solid/liquid interface of a model bio‐active antigen platform, based on a solid‐supported hybrid lipid bilayer (ss‐HLB) of a 2,4‐dinitrophenyl (DNP) lipid, towards a monoclonal mouse anti‐DNP complementary antibody.  相似文献   

14.
A series of novel sulfur-containing bent N-heteroacenes were constructed and characterized by NMR and UV/Vis spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. By introducing sulfur-containing groups (thio, sulfinyl, and sulfonyl) into bent azaacenes, their electronic delocalization was improved and frontier energy levels were modulated. The target products displayed tunable optical and electronic properties through altering the valence of sulfur and fused length of the azaacenes. For the first time, typical products were utilized as organic field effect transistor materials, affording promising results.  相似文献   

15.
Novel chromophores Ch1–8 based verbenone bridge with various strong donors and acceptors were designed for applications in nonlinear optics, and the nonlinear optical (NLO) properties of those verbenone-type chromophores were systematically investigated using the bond length alteration (BLA) theory, two states model (TSM) and sum-over-states (SOS) model. The results show that several verbenone-based chromophores possess remarkably large molecular second-order hyperpolarizabilities, which is due to its electron distribution close to the cyanine limit, the appropriate strength of acceptor, rather large change in dipole moment and low excitation energy. Computed hyperpolarizability (βtot) of Ch6 also approach an outstanding 2922 × 10−30 esu in TFE. The hyperpolarizability density analyses and two states model (TSM) were carried out to make a further insight into the origination of molecular nonlinearity of this unique system, suggesting that tuning structure of acceptor and polarity of the medium have great influence on the second-order nonlinear optical properties. More importantly, chromophores Ch1–Ch8 exhibited distinct features in two-dimensional second order NLO responses, and the strong electro-optical Pockels effect and optical rectification responses. The excellent electronic sum frequency generations (SFG) and difference frequency generations (DFG) effect are observed in these verbenone-type chromophores. These chromophores have a possibility to be appealing second-order nonlinear optical (NLO) materials, data storage materials and DSSCs materials from the standpoint of large β values, high LHE, and excellent two-dimensional second order NLO responses.  相似文献   

16.
New nonlinear optical active materials have been highlighted to apply them to practical applications since about two decades ago. During this period, a number of materials have been developed and studied in academic and industry field. Particularly, the second-order nonlinear optical properties are facile to approach in the laboratory. We can consider the possibility of the device application by investigating the macroscopic second-order nonlinear optical properties using the second harmonic generation and linear electro-optic study. Nowadays, the absolute value of the nonlinear optical coefficient of organic material overcame the value of conventional inorganic materials due to quick research progress. Therefore, the new organic materials systems showed some promising motives to fabricate the optical device.  相似文献   

17.
The nonlinear optical technique of sum frequency generation (SFG) vibrational spectroscopy has been used for the first time to study CdS nanoparticle/arachidic acid multilayer structures. Using a combination of per-deuterated and per-protonated arachidic acid, it is possible to study individual layers anywhere within the film, buried or on the surface. Before reaction with H2S all layers are highly ordered, but after the reaction the layers become highly disordered, except for the surface layer, which remains well ordered. This sheds new light on the structure and stability of these films and shows that SFG can provide unique structural information.  相似文献   

18.
We study an electric quadrupole contribution to sum frequency generation (SFG) at air∕liquid interfaces in an electronically and vibrationally nonresonant condition. Heterodyne-detected electronic sum frequency generation spectroscopy of air∕liquid interfaces reveals that nonresonant χ((2)) (second-order nonlinear susceptibility) has a negative sign and nearly the same value for all eight liquids studied. This result is rationalized on the basis of the theoretical expressions of χ((2)) with an electric quadrupole contribution taken into account. It is concluded that the nonresonant background of SFG is predominantly due to interfacial nonlinear polarization having a quadrupole contribution. Although this nonlinear polarization is localized at the interface, it depends on quadrupolar χ((2)) in the bulk as well as that at the interface. It means that the sign of nonresonant χ((2)) bears no relation to the "up" versus "down" alignment of interfacial molecules, because nonresonant χ((2)) has a quadrupolar origin.  相似文献   

19.
Polyimides are widely used as chip passivation layers and organic substrates in microelectronic packaging. Plasma treatment has been used to enhance the interfacial properties of polyimides, but its molecularmechanism is not clear. In this research, the effects of polyimide surface plasma treatment on the molecular structures at corresponding polyimide/air and buried polyimide/epoxy interfaces were investigated in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG results show that the polyimide backbone molecular structure was different at polyimide/air and polyimide/epoxy interfaces before and after plasma treatment. The different molecular structures at each interface indicate that structural reordering of the polyimide backbone occurred as a result of plasma treatment and contact with the epoxy adhesive. Furthermore, quantitative orientation analysis indicated that plasma treatment of polyimide surfaces altered the twist angle of the polyimide backbone at corresponding buried polyimide/epoxy interfaces. These SFG results indicate that plasma treatment of polymer surfaces can alter the molecular structure at corresponding polymer/air and buried polymer interfaces.  相似文献   

20.
The nonlinear optical properties of tert-butyl phthalocyanine copper Langmuir-Blodgett (CuttbPc LB) films and vacuum-evaporated phthalocyanine copper (CuPc) films deposited on a metal surface were investigated by second-harmonic generation (SHG) spectroscopy. At the organic/metal interface, a space charge field is formed due to the presence of excess charge injected from a metal electrode to the organic layer. Since the Pc molecule has D4h symmetry, an inversion center is present and the optical SH process is not allowed under the electric-dipole approximation. However, the space charge field at the interface directly influences the symmetric structure of the electrons in the Pc molecule. We investigated the contributions of the surface potential to the SHG using Pc LB and vacuum-evaporated films deposited on aluminum (Al) and gold (Au) metal electrodes, where a distinctive difference in the spectrum for the Pc films on the Al and Au surfaces was observed. The contribution of the surface potential was revealed based on the resonant conditions of the SH process, taking into account the electric-quadrupole transition and dc-field-induced electric-dipole transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号