首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Maillard reaction occurring between sugars and amino groups is important in living systems. When amino groups belonging to protein chains are involved, the Maillard reaction has been invoked as responsible for protein cross-linking and the production of 'toxic' compounds. The reaction leads to the production of a heterogeneous group of substances, usually called advanced glycation end products (AGEs). Classical analytical approaches, such as spectroscopic (ultraviolet, fluorescence) and mass spectrometric (matrix-assisted laser desorption/ionization, liquid chromatography/electrospray ionization mass spectrometry) methods, have shown that the digestion mixture is highly complex. However, there are clear differences between the digestion mixtures of glycated and unglycated human serum albumin (HSA). In the former case, possible glycated peptides belonging to the AGE peptide class may be identified. Tandem mass spectrometric experiments on selected species seemed to be promising as regards structural information, but it was thought of interest to undertake the present investigation, based on liquid chromatography/electrospray ionization Fourier transform mass spectrometry, in order to obtain definitive results on their elemental composition. Using this approach, about 20 glycated peptides were detected and their possible structures were postulated by examining the known sequence of HSA.  相似文献   

2.
An extensive study was carried out on HSA and non-enzymatically glycated HSA by enzymatic digestion with trypsin and endoproteinase Lys-C, with the aim of identifying specific glycated peptides deriving from enzymatic digestion of glycated HSA. They may be considered, in pectore, as advanced glycation end products/peptides. These compounds, important at a systemic level in diabetic and nephropathic subjects, are produced by enzymatic digestion of in vivo glycated proteins: They are related to the pathological state of patients and have been invoked as responsible for tissue modifications. The digested mixtures obtained by the two enzymes were analyzed by MALDI/MS and LC/ESI/MSn, and clear cut differences were found. First of all, the digestion products of glycated HSA are generally less abundant than those observed in the case of unglycated HSA, accounting for the lower proclivity of the former to enzymatic digestion. MS/MS experiments on doubly charged ions, comparisons with a protein database, and molecular modeling to identify the lysine NH2 groups most exposed to glycation, identified some glycated peptides in digestion mixtures obtained from both types of enzymatic digestion. Residues 233K, 276K, 378K, 545K, and 525K seem to be privileged glycation sites, in agreement with the fractional solvent accessible surface values calculated by molecular modeling.  相似文献   

3.
4.
Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.  相似文献   

5.
Derivatization of alkylated hydroxyaromatics with N-methyl-bis(trifluoracetamide) is used for a rapid screening for alkylated hydroxyaromatic compounds in complex mixtures by tandem mass spectrometry. Applications are based on a detailed investigation of the fragmentation reactions of derivatized alkylated phenols, 2,3-dihydroindenols, indenols, 1,2,3,4-terrahydronaphtbols and naphthols. As shown by daughter-ion mass spectra obtained in different field-free regions of a BEQQ-instrument, the loss of CF3COOH, CF3CO˙ or CF3COO˙, respectively, is common for the compounds studied and can be used for their detection by means of neutral mass loss scans.  相似文献   

6.
A new method based on ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry ((Q-ToF)-MS) was developed for the analysis of 32 biologically active compounds including anti-inflammatories, analgesics, lipid regulators, psychiatric drugs, anti-ulcer agents, antibiotics, beta-blockers and phytoestrogens. This new method allows chromatographic analysis in 14 min, with instrumental detection limits from 2 to 84 pg, and limits of quantification ranging from 0.1 to 15 ng/L in tap water, and from 2 to 300 ng/L in wastewater. The potential of liquid chromatography with triple quadrupole mass spectrometry (LC/QqQ-MS) was compared with that of UPLC/(Q-ToF)-MS for the analysis of biologically active compounds in water samples. LC/Q-ToF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of ToF instruments diminishes the problem of isobaric interferences and helps the analysis of trace compounds in complex samples. In this work UPLC/Q-ToF chromatograms were recorded containing full scan spectral data. The m/z values of analytes were extracted from the total ion chromatogram (TIC) and the accurate masses of the compounds were obtained. In addition, to increase the selectivity of ToF measurements a narrow accurate mass interval (20 m m/z units mass window) was used to reconstruct the chromatographic traces. However, regarding quantitative performance in terms of dynamic range and limits of detection (LODs), typical LODs achieved by QqQ instruments operating in multiple-reaction monitoring (MRM) mode ranged from 1 to 50 ng/L in wastewater, and the linear response for QqQ instruments generally covers three orders of magnitude. This is an important advantage over ToF instruments and one of the reasons why QqQ instruments are widely used in quantitative environmental analysis.  相似文献   

7.
The series of 14 complex organotin(IV) compounds containing many tin atoms and noncovalent bonds in the structure was characterized by electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). The mass spectra were measured in both polarity modes to obtain complementary structural information. The characteristic pattern of ten natural tin isotopes allowed the determination of the number of tin atoms in the molecular adducts and fragment ions by comparing theoretical and experimental isotopic distributions. Positive ion ESI spectra show unusual adduct formation depending on the type of organic solvent used for the direct infusion analysis owing to the ion-molecule reactions in the ion source. On the basis of the detailed spectral interpretation of organotin(IV) compounds, the fragmentation patterns of multitin organometallic compounds have been proposed. Noncovalent bonds in polymeric complexes are fragmented first, which is then followed by characteristic neutral losses in monomeric units.  相似文献   

8.
Bovine insulin was glycated under hyperglycemic reducing conditions and in nonreducing conditions. Purification through HPLC allowed isolating glycated forms of insulin and a novel triglycated form (6224.5 Da) was purified. Endoproteinase Glu-C digestion combined with mass spectrometry (MALDI-TOF/TOF) allowed determining the exact location of the glycation sites in each of the isolated glycated insulins. For the first time, a triglycated form of insulin was isolated and characterized accordingly to its glycation sites. These glucose binding sites were identified as the N-terminals of both chains (Gly1 and Phe1) and residue Lys29 of B-chain. Moreover, in diglycated insulin we found the coexistence of one specie glycated at the N-terminals of both chains (Gly1 and Phe1) and another specie containing the two glucitol adducts in B-chain (Phe1 and Lys29). Also, in monoglycated insulin generated in reducing and nonreducing conditions, one specie glycated at Phe1 and another specie glycated at Lys29, both B-chain residues coexist.  相似文献   

9.
A new motif for restricting 5'-nucleotides to highly biologically relevant conformations has been developed. The 5',6-oxomethylene transglycosidically tethered versions of uridine 5'-monophosphate and 2'-deoxyuridine 5'-monophosphate (1 and 2, respectively) were synthesized in 10-11 steps from their respective natural nucleoside precursors along routes general to the preparation of tethered versions of a wide variety of 5'-nucleotide-based compounds. In both routes, a shelf-stable 6-hydroxymethyl pyrimidine nucleoside 5'-carboxaldehyde is the key intermediate. It exists in a carbohydrate-like fashion in a cyclic hemiacetal form under aprotic conditions. The phosphorylated cyclic hemiacetals 1 and 2 were isolated as binary mixtures of 5'-diastereomers differing principally in the trajectory of the phosphate group with respect to the carbohydrate. By (1)H NMR, both 1 and 2 were demonstrated to be stable to hydrolysis at ambient temperature in D(2)O solution for at least 2 months. The oxomethylene transglycosidic tether as deployed in 1 and 2 leaves all of the native 5'-nucleotide molecular recognition sites intact while it restricts the framework to a low-energy anti glycosyl conformation and an extended phosphate disposition. This provides a spatial presence that approximates nearly three-quarters of the protein-bound 5'-nucleotide ligands described in the Protein Data Bank. The tether has a low structural and electronic impact, occupies a region of space (over the beta-face of the furan ring) seldom penetrated by proteins, and should be accommodated as readily on purine-based 5'-nucleotide frameworks as on pyrimidine-based ones. Because of its unique and attractive features, this new motif for the conformational restriction of 5'-nucleotides is expected to be useful for producing probes of structure/function relationships and in assessing the conformational binding requirements that enzymes and receptor sites have for their natural 5'-nucleotide-based ligands.  相似文献   

10.
The advanced glycation end products (AGEs) of DNA nucleobases have received little attention, perhaps due to the fact that adenine, guanine, cytosine and thymine do not dissolve under mild pH conditions. To maintain nucleobases in solution, alkaline pH conditions are typically required. The objectives of this investigation were twofold: to study the susceptibility of DNA nucleobases to nonenzymatic attack by different sugars, and to evaluate the factors that influence the formation of nucleobase AGEs at pH 12, i.e., in an alkaline environment that promotes the aldo–keto isomerization and epimerization of sugars. Varying concentrations of adenine, guanine, thymine and cytosine were incubated over time with constant concentrations of D-glucose, D-galactose or D/L-glyceraldehyde under different conditions of temperature and ionic strength. Incubation of the nucleobases with the sugars resulted in a heterogeneous assembly of AGEs whose formation was monitored by UV/fluorescence spectroscopy. Capillary electrophoresis and HPLC were used to resolve the AGEs of the DNA adducts and provided a powerful tool for following the extent of glycation in each of the DNA nucleobases. Mass spectrometry studies of DNA adducts of guanine established that glycation at pH 12 proceeded through an Amadori intermediate.  相似文献   

11.
Determination of N-nitroso compounds by mass spectrometry.   总被引:1,自引:0,他引:1  
T A Gough 《The Analyst》1978,103(1229):785-806
  相似文献   

12.
This study describes the use of inkjet printing for the preparation of test materials containing gold nanoparticles (AuNPs) on a biologically relevant matrix and discusses the methods of using time-of-flight secondary ion mass spectrometry (ToF-SIMS) for their spatially resolved quantification. Evaluation of test materials containing AuNPs with nominal diameters of (30, 80, 100, and 150) nm deposited onto gelatin with loadings ranging from 34 fg up to 67 000 fg per spot suggests that ToF-SIMS has the sensitivity and the dynamic range to quantify NP deposits in a biological matrix at toxicologically relevant concentrations, although it was not capable of reliably determining the size of the AuNPs from the intensity data. Regardless, the ability to extract intensity data from individual regions of interest (ROIs) showed that spatially resolved quantification is possible, even when multiple features exist in a single image and in a single depth profile. The argon gas cluster source used for sputtering led to a matrix removal effect where the matrix surrounding the AuNPs became negligible, which may facilitate the preparation of quantitative test materials.  相似文献   

13.
The collison-induced dissociation of a range of organotin compounds has been examined by tandem (MS–MS) mass spectrometry in order to investigate the potential of the technique for speciation without prior chromatographic separation. Tables of parent–daughte ion relationships are prepared for a group of six closely related compounds. The results obtained are sufficiently characteristic to distinguish between the isolated compounds and to identify the individual components of a simple mixture. This procedure has potential applications for less volatile compounds and for quantitative analysis.  相似文献   

14.
Perhalogenated pyridine derivatives give negative molecular ions which undergo various fragmentation processes upon negative ion chemical ionisation. The similarities between highly fluorinated negative molecular and fragment ions that are preferentially formed in the gas and solution phases are outlined. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Non-enzymatic glycation (Maillard reaction) of long-lived proteins is a major contributor to the pathology of diabetes, and possibly aging and Alzheimer's disease. Among the amino residues in proteins arginine plays an important role, and its modification by sugar moieties generates the so-called advanced glycation end products (AGEs). Moreover, alpha-dicarbonyl compounds have been found as the main participants in those modifications.Four alpha-dicarbonyl compounds, aldehydic and ketonic, were reacted with the modified amino acid N(alpha)-acetyl-L-arginine (AcArg), in an attempt to establish structure/activity relationships for the reactivity of alpha-dicarbonyls with the amine compound. Electrospray ionization mass spectrometry (ESI-MS), combined with tandem mass spectrometry (MS/MS), was used to identify and characterize reagents, intermediates and reaction products. The fragmentation patterns of precursor ions showed similarities in all reaction systems studied, in which fragmentation of the amino acid residue prevails, especially for the dehydrated and/or multiple dehydrated precursor ions. For the non-hydrated ion species, fragmentation of the arginyl guanidino group was mainly observed. Specific information regarding the nature of the ions formed, in which the dicarbonyl electrophile character played an important role, was obtained. As an example, singly and doubly hydrated acetyl-argpyrimidine ions were detected for the methylglyoxal reaction only. For symmetrical dicarbonyls, glyoxal and diacetyl, the importance of steric contributions with respect to the energetic ones is discussed. Furthermore, the dehydrated acetyl-tetrahydropyrimidine ions for methylglyoxal and phenylglyoxal reactions revealed fragment ion compositions including the protonated molecules of acetyl-argpyrimidine, -hydroimidazolone and -5-methylimidazolone. An explanation for the acetyl-argpyrimidine formation from the acetyl-hydroimidazolone formation reaction is proposed. Aspects such as the amount of acetyl-hydroimidazolone formed, the response of the hydration equilibria of the dicarbonyl forms to the new unhydrated dicarbonyls introduced by the reversal of the acetyl-hydroimidazolone formation reaction and the stability of the dicarbonyl intermediate involved in the acetyl-argpyrimidine formation are proposed, as being responsible to control the formation of acetyl-argpyrimidine.  相似文献   

16.
Ferrichrome, a fungal siderophore that is also utilized by some bacterial species, was studied with liquid secondary ion mass spectrometry (LSIMS) and matrix-assisted laser desorption ionixation (MALDI) mass spectrometry. A strong ionic signal corresponding to a FeIII complex was observed with LSIMS in the positive ion mode. Switching the polarity of the mass spectrometer did not necessarily result in reduction of ferric ion, although certain conditions led to appearance of a FeII complex signal as well. The results of the structural studies of the metal ion-cyclic peptide complex with collisionally induced dissociation allowed unambiguous identification of the chelation sites. The action of the siderophore on FeIII was studied by in vitro chelation of ferric ion (from ferric citrate) by the iron-free ferrichrome. Effective chelation of ferric ion was compared to actions of the iron-free ferrichrome on other metal ions. Unlike LSIMS, desorption with MALDI did not form selectively molecular ions of intact ferrichrome: the spectra contained abundant peaks corresponding to the cyclic peptide itself and its nonspecific association with alkali metal ions.  相似文献   

17.
Faba bean (Vicia faba L.) has potential to expand globally because of its ability to provide nutritional benefits through its high amounts of seed protein, carbohydrates and dietary fiber. The seeds also contain levodopa, a treatment for Parkinson’s disease. Faba bean consumption is limited primarily because the seeds contain the pyrimidine glycosides, vicine and convicine (v-c), which can cause favism in people with a genetically inherited glucose-6-phosphate dehydrogenase (G6PD) deficiency. G6PD deficiency is inherited as an X–linked recessive allele and susceptible individuals develop anaemia when they consume faba beans. Faba bean cultivars with reduced levels of v-c are available, but it is difficult to maintain genetic isolation because the plants can be cross-pollinated by bees. The seed supplies of low v-c seed stocks and foods derived from them must be monitored to ensure maintenance of low v-c. Here we report a rapid, robust method to measure vicine, convicine, and levodopa using high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with flow injection analysis and mass spectrometry that has an analysis step of 54 s. With the addition of a methanol gas modifier in FAIMS, vicine and convicine were separated in the gas-phase and then measured by tandem mass spectrometry. More than 40 genotypes representing diverse faba bean germplasm were quantified. Convicine showed the widest concentration range (~520X) and all analytes showed good reproducibility illustrating that this method can be routinely used to simultaneously screen for v-c and quantify L-DOPA, thereby ensuring food safety.  相似文献   

18.
A series of 19 compounds of general formula R1S-Cd-SR2, R1, and R2, being some biologically relevant thiol amino acids and peptides, were prepared by direct reaction of cadmium(II) ions and thiols in water at millimolar concentration. The obtained products were characterized by electrospray ionization and triple quadrupole tandem mass spectrometry. The source spectra of stoichiometric 1:2 Cd-thiol systems containing either an individual thiol or equimolar mixtures of two different thiols featured several Cd-containing signals, although at much lesser intensity than in the previously reported experiments with mercury(II) (J. Am. Soc. Mass Spectrom. 2004, 15, 288–300). Also, the relative intensity of the homo- and heterodimeric thiolates were significantly different from the theoretically expected 1:2:1 ratio, thus pointing at some degree of discrimination between the different thiols. In particular, homo-cysteine showed much less reactivity than cysteine, and penicillamine and cysteine methyl ester much less than the free amino acid. The fragment spectra show structure-specific ions for the different ligands bound to the metal ion and allow a stand-alone determination of the connectivity also of isomeric pairs. The fragmentation pathways are similar to those observed for the corresponding mercury(II) analogues, with the addition of further intense and specific fragments, one formally carrying a Cd-bound OH ligand and one connected as a five-membered oxazolone carrying a cadmium-bis-thiolate side chain, both formed with a high intensity. Energy-resolved fragmentation data show that metal-free ions can be generated from cysteine but not from glutathione conjugates and point to the possibility of unveiling differences in the biochemical behavior of the conjugates of different heavy metals through the detailed study of their mass spectrometric fragmentation.  相似文献   

19.
The protein-micelle complex formed between the protein EmrE and the lipid dodecylmaltoside has been examined by mass spectrometry. The results show that despite the unfavorable hydrophobic environment in the mass spectrometer it is possible to preserve protein submicelle complexes in the gas phase. The peaks assigned to the submicelle complexes are broad in nature and consistent with a heterogeneous distribution of lipid molecules attached to the protein complex. As such, the spectrum cannot be interpreted. To simplify this complexity we used a tandem mass spectrometry procedure in which discrete m/z values are isolated from the peak and subjected to collision-induced dissociation. These spectra reveal clusters of DDM molecules as well as sequential release of TPP+ and EmrE from the complex as the collision cell voltage is raised. Taken together, the results provide direct evidence for drug binding within a relevant gas-phase protein-micelle complex.  相似文献   

20.
A general mass spectrophotometric method for the identification of tellurium-containing compounds is described. The method is based on the analysis of the typical pattern of cluster peaks containing tellurium due to -Te-, -Te2- or
(X = Cl, Br). A comparison of the computer calculated and experimental mass spectra of some of the compounds containing tellurium is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号