首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The effects of ligand perdeuteration on the metal-to-ligand charge-transfer (MLCT) excited-state emission properties at 77 K are described for several [Ru(L)(4)bpy](2+) complexes in which the emission process is nominally [uIII,bpy-] --> [RuII,bpy]. The perdeuteration of the 2,2'-bipyridine (bpy) ligand is found to increase the zero-point energy differences between the ground states and MLCT excited states by amounts that vary from 0 +/- 10 to 70 +/- 10 cm(-1) depending on the ligands L. This indicates that there are some vibrational modes with smaller force constants in the excited states than in the ground states for most of these complexes. These blue shifts increase approximately as the energy difference between the excited and ground states decreases, but they are otherwise not strongly correlated with the number of bipyridine ligands in the complex. Careful comparisons of the [Ru(L)(4)(d(8)-bpy)](2+) and [Ru(L)(4)(h(8)-bpy](2+) emission spectra are used to resolve the very weak vibronic contributions of the C-H stretching modes as the composite contributions of the corresponding vibrational reorganizational energies. The largest of these, 25 +/- 10 cm(-1), is found for the complexes with L = py or bpy/2 and smaller when L = NH(3). Perdeuteration of the am(m)ine ligands (NH(3), en, or [14]aneN(4)) has no significant effect on the zero-point energy difference, and the contributions of the NH stretching vibrational modes to the emission band shape are too weak to resolve. Ligand perdeuteration does increase the excited-state lifetimes by a factor that is roughly proportional to the excited-state-ground-state energy difference, even though the CH and NH vibrational reorganizational energies are too small for nuclear tunneling involving these modes to dominate the relaxation process. It is proposed that metal-ligand skeletal vibrational modes and configurational mixing between metal-centered, bpy-ligand-centered, and MLCT excited states are important in determining the zero-point energy differences, while a large number of different combinations of relatively low-frequency vibrational modes must contribute to the nonradiative relaxation of the MLCT excited states.  相似文献   

2.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

3.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

4.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(15):4044-4050
Supramolecular trimetallic complexes [((tpy)RuCl(BL))(2)RhCl(2)](3+) where tpy = 2,2':6',2' '-terpyridine and BL = dpp or bpm [dpp = 2,3-bis(2-pyridyl)pyrazine and bpm = 2,2'-bipyrimidine] have been synthesized and characterized. The mixed-metal complexes couple a reactive rhodium(III) center to two ruthenium(II) light absorbers to form a light absorber-electron collector-light absorber triad. The variation of the bridging (dpp and bpm) and terminal (tpy in lieu of bpy) ligands has some profound effects on the properties of these complexes, and they are remarkably different from the previously reported [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+) system. The electrochemical data for both title trimetallics consist of overlapping Ru(III/II) couples for both terminal metals at 1.12 V versus the Ag/AgCl reference electrode. Cathodically an irreversible Rh(III/I) reduction followed by bridging ligand reductions is seen. This is indicative of highest occupied molecular orbitals (HOMO) localized on the terminal ruthenium metal centers and a lowest unoccupied molecular orbital (LUMO) residing on the rhodium. This rhodium-based LUMO is in contrast to the bpy analogue [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+), which has a bpm(pi) localized LUMO. This orbital inversion by terminal ligand variation illustrates the similar energy of these Rh(dsigma) and bpm(pi) orbitals within this structural motif. Both title trimetallics possess broad, low-energy Ru --> BL charge transfer absorbances at 540 nm (dpp) and 656 nm (bpm). A comparison of the spectroscopic, electrochemical, and spectroelectrochemical properties of these trimetallic complexes is presented.  相似文献   

5.
Transient spectral hole-burning (THB), a powerful technique for probing the electronic structures of coordination compounds, is applied to the lowest excited 3MLCT states of specifically deuterated [Ru(bpy)3]2+ complexes doped into crystals of racemic [Zn(bpy)3](ClO4)2. Results are consistent with and complementary to conclusions reached from excitation-line-narrowing experiments. Two sets of 3MLCT transitions are observed in conventional spectroscopy of [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2; n = 0, 2; m = 2, 8; n not = m) complexes doped into [Zn(bpy)3](ClO4)2. The two sets coincide with the 3MLCT transitions observed for the homoleptic [Ru(bpy-d(m))3]2+ and [Ru(bpy-d(n))3]2+ complexes and can thus be assigned to localized 3MLCT transitions to the bpy-d(m) and bpy-d(n) ligands. The THB experiments presented in this paper exclude a two-site hypothesis. When spectral holes are burnt at 1.8 K into 3MLCT transitions associated with the bpy and bpy-d2 ligands in [Ru(bpy)(bpy-d8)2]2+, [Ru(bpy)2(bpy-d8)]2+, and [Ru(bpy-d2)2(bpy-d8)]2+, side holes appear in the 3MLCT transitions associated with the bpy-d8 ligands approximately 40 and approximately 30 cm(-1) higher in energy. Since energy transfer to sites 40 or 30 cm(-1) higher in energy cannot occur at 1.8 K, the experiments unequivocally establish that the two sets of 3MLCT transitions observed for [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2) complexes in [Zn(bpy)3](ClO4)2 occur on one molecular cation.  相似文献   

6.
The isocyanide ligand forms complexes with ruthenium(II) bis-bipyridine of the type [Ru(bpy)(2)(CNx)Cl](CF(3)SO(3)) (1), [Ru(bpy)(2)(CNx)(py)](PF(6))(2) (2), and [Ru(bpy)(2)(CNx)(2)](PF(6))(2) (3) (bpy = 2,2'-bipyridine, py = pyridine, and CNx = 2,6-dimethylphenylisocyanide). The redox potentials shift positively as the number of CNx ligands increases. The metal-to-ligand charge-transfer (MLCT) bands of the complexes are located at higher energy than 450 nm and blue shift in proportion to the number of CNx ligands. The complexes are not emissive at room temperature but exhibit intense structured emission bands at 77 K with emission lifetimes as high as 25 micros. Geometry optimization of the complexes in the singlet ground and lowest-lying triplet states performed using density functional theory (DFT) provides information about the orbital heritage and correlates with X-ray and electrochemical results. The lowest-lying triplet-state energies correlate well with the 77 K emission energies for the three complexes. Singlet excited states calculated in ethanol using time-dependent density functional theory (TDDFT) and the conductor-like polarizable continuum model (CPCM) provide information that correlates favorably with the experimental absorption spectra in ethanol.  相似文献   

7.
The syntheses of three new dinuclear [Ru([n]aneS(4))] complexes, where n = 12, 14, 16, bridged by the ligand 2,3-bis(2-pyridyl)pyrazine, (dpp) are reported. The absorption spectra of the complexes show changes in the energy of the MLCT bands within the series, indicating that the thiacrown ligands stabilise the Ru(II) oxidation state to different degrees. Electrochemical studies are also consistent with these observations, and reveal that the pi-acceptor properties of [n]aneS(4) ligands lead to metal based oxidation couples occurring at potentials that are more anodic than those observed in the analogous dinuclear [Ru(bpy)(2)](2+) complex. Despite the back-bonding properties of the thiacrown ligands leading to a reduction in ligand-bridge mediated metal-metal coupling, electrochemical interactions between the metals are still considerable.  相似文献   

8.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

9.
The 77 K emission spectra of a series of [Ru(Am)6-2n(bpy)n]2+ complexes (n = 1-3) have been determined in order to evaluate the effects of appreciable excited state (e)/ground state (g) configurational mixing on the properties of simple electron-transfer systems. The principal focus is on the vibronic contributions, and the correlated distortions of the bipyridine ligand in the emitting MLCT excited state. To address the issues that are involved, the emission band shape at 77 K is interpreted as the sum of a fundamental component, corresponding to the {e,0'} --> {g,0} transition, and progressions in the ground-state vibrational modes that correlate with the excited-state distortion. Literature values of the vibrational parameters determined from the resonance-Raman (rR) for [Ru(NH3)4bpy]2+ and [Ru(bpy)3]2+ are used to model the emission spectra and to evaluate the spectral analysis. The Gaussian fundamental component with an energy Ef and bandwidth Deltanu1/2 is deconvoluted from the observed emission spectrum. The first-, second-, and third-order terms in the progressions of the vibrational modes that contribute to the band shape are evaluated as the sums of Gaussian-shaped contributions of width Deltanu1/2. The fundamental and the rR parameters give an excellent fit of the observed emission spectrum of [Ru(NH3)4bpy]2+, but not as good for the [Ru(bpy)3]2+ emission spectrum probably because the Franck-Condon excited state probed by the rR is different in symmetry from the emitting MLCT excited state. Variations in vibronic contributions for the series of complexes are evaluated in terms of reorganizational energy profiles (emreps, Lambdax) derived from the observed spectra, and modeled using the rR parameters. This modeling demonstrates that most of the intensity of the vibronic envelopes obtained from the frozen solution emission spectra arises from the overlapping of first-order vibronic contributions of significant bandwidth with additional convoluted contributions of higher order vibronic terms. The emrep amplitudes of these complexes have their maxima at about 1500 cm(-1) in frozen solution, and Lambdax(max) decreases systematically by approximately 2-fold as Ef decreases from 17,220 for [Ru(bpy)3]2+ to 12,040 cm(-1) for [Ru(NH3)4bpy]2+ through the series of complexes. Corrections for higher order contributions and bandwidth differences based on the modeling with rR parameters indicate that the variations in Lambdax(max) imply somewhat larger decreases in first-order bpy vibrational reorganizational energies. The large attenuation of vibrational reorganizational energies of the [Ru(Am)6-2n(bpy)n]2+ complexes contrasts with the apparent similarity of reorganizational energy amplitudes for the absorption and emission of [Ru(NH3)4bpy]2+. These observations are consistent with increasing and very substantial excited-state/ground-state configurational mixing and decreasing excited-state distortion as Ef decreases, but more severe attenuation for singlet/singlet than triplet/singlet mixing (alphage > alphaeg for the configurational mixing coefficients at the ground-state and excited-state potential energy minima, respectively); it is inferred that 0.18 > or = alphage2 > or = 0.09 for [Ru(bpy)3]2+ and 0.37 > or = alphage2 > or = 0.18 for [Ru(NH3)4bpy]2+ in DMSO/water glasses, where the ranges are based on models that there is or is not a spin restriction on configurational mixing (alphage > alphaeg and alphage = alphaeg), respectively, for these complexes.  相似文献   

10.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(24):6196-6198
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.  相似文献   

11.
Mixed-metal supramolecular complexes that couple ruthenium or osmium based light absorbers to a central rhodium(III) core have been designed which photocleave DNA upon irradiation with visible light. The complexes [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5), [[(bpy)(2)Os(dpp)](2)RhCl(2)](PF(6))(5), and [[(tpy)RuCl(dpp)](2)RhCl(2)](PF(6))(3), where bpy = 2,2'-bipyridine, tpy = 2,2':6',2' '-terpyridine, and dpp = 2,3-bis(2-pyridyl)pyrazine, all exhibit intense metal to ligand charge transfer (MLCT) based transitions in the visible but possess lower lying metal to metal charge transfer (MMCT) excited states. These supramolecular complexes with low lying MMCT states photocleave DNA when excited into their intense MLCT transitions. Structurally similar complexes without this low lying MMCT state do not exhibit DNA photocleavage, establishing the role of this MMCT state in the DNA photocleavage event. Design considerations necessary to produce functional DNA photocleavage agents are presented herein.  相似文献   

12.
The series of complexes [Ru(bpy)(3-n)(btz)(n)][PF(6)](2) (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, 2n = 1, 3n = 2, 4n = 3) have been prepared and characterised, and the photophysical and electronic effects imparted by the btz ligand were investigated. Complexes 2 and 3 exhibit MLCT absorption bands at 425 and 446 nm respectively showing a progressive blue-shift in the absorption on increasing the btz ligand content when compared to [Ru(bpy)(3)][Cl](2) (1). Complex 4 exhibits a heavily blue-shifted absorption spectrum with respect to those of 1-3, indicating that the LUMO of the latter are bpy-centred with little or no btz contribution whereas that of 4 is necessarily btz-centred. DFT calculations on analogous complexes 1'-4' (in which the benzyl substituents are replaced by methyl) show that the HOMO-LUMO gap increases by 0.3 eV from 1'-3' through destabilisation of the LUMO with respect to the HOMO. The HOMO-LUMO gap of 4' increases by 0.98 eV compared to that of 3' due to significant destabilisation of the LUMO. Examination of TDDFT data show that the S(1) states of 1'-3' are (1)MLCT in character whereas that of 4' is (1)MC. The optimisation of the T(1) state of 4' leads to the elongation of two mutually trans Ru-N bonds to yield [Ru(κ(2)-btz)(κ(1)-btz)(2)](2+), confirming the (3)MC character. Thus, replacement of bpy by btz leads to a fundamental change in the ordering of excited states such that the nature of the lowest energy excited state changes from MLCT in nature to MC.  相似文献   

13.
Novel polynuclear complexes of rhenium and ruthenium containing PCA (PCA = 4-pyridinecarboxaldehyde azine or 4-pyridinealdazine or 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a bridging ligand have been synthesized as PF(6-) salts and characterized by spectroscopic, electrochemical, and photophysical techniques. The precursor mononuclear complex, of formula [Re(Me(2)bpy)(CO)(3)(PCA)](+) (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), does not emit at room temperature in CH(3)CN, and the transient spectrum found by flash photolysis at lambda(exc) = 355 nm can be assigned to a MLCT (metal-to-ligand charge transfer) excited state [(Me(2)bpy)(CO)(3)Re(II)(PCA(-))](+), with lambda(max) = 460 nm and tau < 10 ns. The spectral properties of the related complexes [[Re(Me(2)bpy)(CO)(3)}(2)(PCA)](2+), [Re(CO)(3)(PCA)(2)Cl], and [Re(CO)(3)Cl](3)(PCA)(4) confirm the existence of this low-energy MLCT state. The dinuclear complex, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(II)(NH(3))(5)](3+), presents an intense absorption in the visible spectrum that can be assigned to a MLCT d(pi)(Ru) --> pi(PCA); in CH(3)CN, the value of lambda (max) = 560 nm is intermediate between those determined for [Ru(NH(3))(5)(PCA)](2+) (lambda(max) = 536 nm) and [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](4+) (lambda(max) = 574 nm), indicating a significant decrease in the energy of the pi-orbital of PCA. The mixed-valent species, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(III)(NH(3))(5)](4+), was obtained in CH(3)CN solution, by bromine oxidation or by controlled-potential electrolysis at 0.8 V in a OTTLE cell of the [Re(I),Ru(II)] precursor; the band at lambda(max) = 560 nm disappears completely, and a new band appears at lambda(max) = 483 nm, assignable to a MMCT band (metal-to-metal charge transfer) Re(I) --> Ru(III). By using the Marcus-Hush formalism, both the electronic coupling (H(AB)) and the reorganization energy (lambda) for the metal-to-metal intramolecular electron transfer have been calculated. Despite the considerable distance between both metal centers (approximately 15.0 Angstroms), there is a moderate coupling that, together with the comproportionation constant of the mixed-valent species [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](5+) (K(c) approximately 10(2), in CH(3)CN), puts into evidence an unusual enhancement of the metal-metal coupling in the bridged PCA complexes. This effect can be accounted for by the large extent of "metal-ligand interface", as shown by DFT calculations on free PCA. Moreover, lambda is lower than the driving force -DeltaG degrees for the recombination charge reaction [Re(II),Ru(II)] --> [Re(I),Ru(III)] that follows light excitation of the mixed-valent species. It is then predicted that this reverse reaction falls in the Marcus inverted region, making the heterodinuclear [Re(I),Ru(III)] complex a promising model for controlling the efficiency of charge-separation processes.  相似文献   

14.
Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF(1), trans-bpy-TTF(1), and cis-bpy-TTF(2) have been prepared and characterized. X-ray analysis of trans-bpy-TTF(1) is also reported. Such ligands have been used to prepare two new trinuclear Ru(II) complexes, namely, [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(1))](PF(6))(6) (9; bpy=2,2'-bipyridine; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(2))](PF(6))(6) (10). These compounds can be viewed as coupled antennas and charge-separation systems, in which the multichromophoric trinuclear metal subunits act as light-harvesting antennas and the tetrathiafulvalene electron donors can induce charge separation. The absorption spectra, redox behavior, and luminescence properties (both at room temperature in acetonitrile and at 77 K in a rigid matrix of butyronitrile) of the trinuclear metal complexes have been studied. For the sake of completeness, the mononuclear compounds [(bpy)(2)Ru(bpy-TTF(1))](PF(6))(2) (7) and [(bpy)(2)Ru(bpy-TTF(2))](PF(6))(2) (8) were also synthesized and studied. The properties of the tetrathiafulvalene-containing species were compared to those of the model compounds [Ru(bpy)(2)(4,4'-Mebpy)](2+) (4,4'-Mebpy=4,4'-dimethyl-2,2'-bipyridine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy)](6+). The absorption spectra and redox behavior of all the new metal compounds can be interpreted by a multicomponent approach, in which specific absorption features and redox processes can be assigned to specific subunits of the structures. The luminescence properties of the complexes in rigid matrices at 77 K are very similar to those of the corresponding model compounds without TTF moieties, whereas the new species are nonluminescent, or exhibit very weak emissions relative to those of the model compounds in fluid solution at room temperature. Time-resolved transient absorption spectroscopy confirmed that the potentially luminescent MLCT states of 7-10 are significantly shorter lived than the corresponding states of the model species. Photoinduced electron-transfer processes from the TTF moieties to the (excited) MLCT chromophore(s) are held responsible for the quenching processes.  相似文献   

15.
The variations in the nonchromophoric ligands of [Ru(L)4bpy]2+ complexes are shown to result in large changes in emission band shapes, even when the emission energies are similar. These changes in band shape are systematically examined by means of the generation of empirical reorganizational energy profiles (emreps) from the observed emission spectra (Xie, P.; et al. J. Phys. Chem. A 2005, 109, 4671), where these profiles provide convenient probes of the differences in distortions from the ground-state structures of the 2,2-bipyridine (bpy) ligands (for distortion modes near 1500 cm(-1)) in the metal-to-ligand charge-transfer (MLCT) excited states for a series of complexes with the same ruthenium(II) bipyridine chromophore. The bpy ligand is nearly planar in the X-ray structures of the complexes with (L)4 = (NH3)4, triethylenetetraamine (trien), and 1,4,7,10-tetraazacyclododecane ([12]aneN4). However, for (L)4 = 5,12-rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, the X-ray crystal structure shows that the bpy ligand is twisted in the ground state (a result of methyl/bpy stereochemical repulsion) and the emrep amplitude at about 1500 cm(-1) is significantly larger for this structure than for the complex with (L)4 = 1,4,8,11-tetraazacyclotetradecane, consistent with larger reorganizational energies of the bpy distortion modes in order to form a planar (bpy(-)) moiety in the excited state of the former. The trien and [12]aneN4 complexes have very nearly the same emission energies, yet the 40% smaller vibronic sideband intensity of the latter indicates that the MLCT excited state is significantly less distorted; this smaller distortion and the related shift in the distribution of distortion mode reorganizational energy amplitudes is apparently related to the 36-fold longer lifetime for (L)4 = [12]aneN4 than for (L)4 = trien. For the majority (77%) of the [Ru(L)4bpy]2+ complexes examined, there is a systematic decrease in emrep amplitudes near 1500 cm(-1), consistent with decreasing excited-state distortion, with the excited-state energy as is expected for ground state-excited state configurational mixing in a simple two-state model. However, the complexes with L = [12]aneN4, 1,4,7,10-tetraazacyclododeca-1-ene, and (py)4 all have smaller emrep amplitudes and thus less distorted excited states than related complexes with the same emission energy. The observations are not consistent with simple two-state models and seem to require an additional distortion induced by excited state-excited state configurational mixing in most complexes. Because the stereochemical constraints of the coordinated [12]aneN4 ligand restrict tetragonal distortions around the metal, configurational mixing of the 3MLCT excited state with a triplet ligand-field excited state of Ru(II) could account for some of the variations in excited-state distortion. The large number of vibrational distortion modes and their small vibrational reorganizational energies in these complexes indicate that a very large number of relaxation channels contribute to the variations in 3MLCT lifetimes and that the metal-ligand skeletal modes are likely to contribute to some of these channels.  相似文献   

16.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

17.
Two new ditopic ligands, 5,5"-azobis(2,2'-bipyridine) (5,5"-azo) and 5,5"-azoxybis(2,2'-bipyridine) (5,5"-azoxy), were prepared by the reduction of nitro precursors. Mononuclear and dinuclear Ru(II) complexes having one of these bridging ligands and 2,2'-bipyridine terminal ligands were also prepared, and their properties were compared with previously reported Ru(II) complexes having 4,4"-azobis(2,2'-bipyridine) (4,4"-azo). The X-ray crystal structure showed that 5,5"-azo adopts the trans conformation and a planar rodlike shape. The X-ray crystal structure of [(bpy)(2)Ru(5,5"-azo)Ru(bpy)(2)](PF(6))(4) (Ru(5,5"-azo)Ru) showed that the bridging ligand is in the trans conformation and nearly planar also in the complex and the metal-to-metal distance is 10.0 A. The azo or azoxy ligand in these complexes exhibits reduction processes at less negative potentials than the terminal bpy's due to the low-lying pi level. The electronic absorption spectra for the complexes having 5,5"-azo or 5,5"-azoxy exhibit an extended low-energy metal-to-ligand charge-transfer absorption. The ligands, 5,5"-azo and 5,5"-azoxy, and the mononuclear complex, [(bpy)(2)Ru(5,5"-azo)](2+), isomerize reversibly upon light irradiation. The low-energy MLCT state sensitizes the isomerization of the azo moiety in this complex. While [(bpy)(2)Ru(4,4"-azo)Ru(bpy)(2)](PF(6))(4) exhibits light switch properties, namely, significant electrochromism and a large luminescence enhancement, upon reduction, Ru(5,5"-azo)Ru does not show these properties. The radical anion formation upon reduction of these complexes has been confirmed by ESR spectroscopy.  相似文献   

18.
Mixed ligand complexes of the type Ru(pq)(2)(PP)(2+) (pq = 2,2'-pyridylquinoline and PP = one bidentate or two monodentate phosphine ligands) have been prepared from the appropriate phosphine and Ru(pq)(2)Cl(2). The room temperature absorption spectra and low temperature (77 K) emission spectra, emission lifetimes, and quantum yields have been measured for the series of complexes and compared with those of Ru(pq)(3)(2+) and analogous Ru(bpy)(2)(PP)(2+) complexes (bpy = 2,2'-bipyridine) where possible. Emission spectra have been fit using a single mode Franck-Condon analysis. The visible absorption bands and emission bands are assigned to MLCT transitions that are blue shifted relative to Ru(pq)(3)(2+), while the emission lifetimes and quantum yields are increased. The trends in the nonradiative rate constants, k(nr), are described in terms of the energy gap, E(0), and the Huang-Rhys factor, S(M), which were obtained from the spectral fittings, and are correlated with the phosphine ligand structures.  相似文献   

19.
The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2'-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether ligands maintain their tendency to fold themselves even in solution. The bis-mu-chloro dimers 1 and 2 show a spin-allowed but Laporte-forbidden t(2g)(6)((1)A(1g))--> t(2g)(5) e(g)(1)((1)T(1g), (1)T(2g)) d-d transition. They also display an intense Ru(II) dpi--> py/bzim (pi*) metal-to-ligand charge transfer (MLCT) transition. The mononuclear complexes 3-8 exhibit dpi-->pi* MLCT transitions in the range 340-450 nm. The binuclear complexes 1 and 2 exhibit a ligand field ((3)MC) luminescence even at room temperature, whereas the mononuclear complexes 3 and 4 show a ligand based radical anion ((3)MLCT) luminescence. The binuclear complexes 1 and 2 undergo two successive oxidation processes corresponding to successive Ru(II)/Ru(III) couples, affording a stable mixed-valence Ru(II)Ru(III) state (K(c): 1, 3.97 x 10(6); 2, 1.10 x 10(6)). The mononuclear complexes 3-7 exhibit only one while 8 shows two quasi-reversible metal-based oxidative processes. The coordinated 'soft' thioether raises the redox potentials significantly by stabilising the 'soft' Ru(II) oxidation state. One or two ligand-based reduction processes were also observed for the mononuclear complexes.  相似文献   

20.
The physical and photophysical properties of a series of monometallic, [Ru(bpy)(2)(dmb)](2+), [Ru(bpy)(2)(BPY)](2+), [Ru(bpy)(Obpy)](2+) and [Ru(bpy)(2)(Obpy)](2+), and bimetallic, [{Ru(bpy)(2)}(2)(BPY)](4+) and [{Ru(bpy)(2)}(2)(Obpy)](4+), complexes are examined, where bpy is 2,2'-bipyridine, dmb is 4,4'-dimethyl-2,2'-bipyridine, BPY is 1,2-bis(4-methyl-2,2'-bipyridin-4'-yl)ethane, and Obpy is 1,2-bis(2,2'-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nm region, intraligand pi --> pi transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at -1.3 V and ending at approximately -1.9 V, and emission from a (3)MLCT state having energy maxima between 598 and 610 nm. The Ru(III)/Ru(II) oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy)(2)(BPY)](2+), the Ru(III)/Ru(II) potential for [Ru(bpy)(2)(Obpy)](2+) increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3 ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [{Ru(bpy)(2)}(2)(BPY)](4+), the Ru(III)/Ru(II) potential for [{Ru(bpy)(2)}(2)(Obpy)](4+) increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26. Emission lifetimes measured in 4:1 ethanol:methanol were temperature dependent over 90-360 K. In the fluid environment, emission lifetimes display a biexponential energy dependence ranging from 100 to 241 cm(-)(1) for the first energy of activation and 2300-4300 cm(-)(1) for the second one. The smaller energy is attributed to changes in the local matrix of the chromophores and the larger energy of activation to population of a higher energy dd state. Explanations for the variations in physical properties are based on molecular mechanics calculations which reveal that the Ru-N bond distance increases from 2.05 ? (from Ru(II) to bpy and BPY) to 2.08 ? (from Ru(II) to Obpy) and that the metal-to-metal distance increases from approximately 7.5 ? for [{Ru(bpy)(2)}(2)(Obpy)](4+) to approximately 14 ? for [{Ru(bpy)(2)}(2)(BPY)](4+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号