首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monte Carlo simulations of molecular configurations of aqueous solutions of spherical particles with a special potential of solute—water interaction were carried out. The influence of the particle size on the properties of hydration shells was investigated. Two regimes of hydrophobic hydration with a crossover point at 0.4 nm were found. Hydration of smaller particles causes insignificant changes in the properties of water. Particles larger than 0.4 nm break the liquid water structure. Breaking effects are more pronounced in the first hydration shell of particles. Dewetting of hard sphere surfaces predicted by the LCW phenomenological theory has peculiarities in the case of hydration of fixed-rigidity spheres. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1777–1786, September, 2008.  相似文献   

2.
3.
《Chemical physics letters》2003,367(5-6):586-592
Dynamical properties, librational and vibrational motions of water molecules in the first and second hydration shells of the Fe(II) and Fe(III) ion were evaluated by means of velocity autocorrelation functions obtained by combined quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations. The frequencies of rotation around three principal axes and the frequencies of intramolecular vibration of the water molecules in the first hydration shells obtained from the simulations are blue-shifted for both ions compared to those observed experimentally for liquid water. The intramolecular geometry of water molecules in the quantum mechanically treated region (ion plus first hydration shell) shows shorter O–H bonds and wider H–O–H angles than the bulk solvent.  相似文献   

4.
5.
We investigate the liquid structure, ion hydration, and some thermodynamic properties associated with the rigid geometry approximation to water by applying ab initio molecular dynamics simulations (AIMD) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional at T = 320 K. We vary the rigid water geometry in order to locate a class of practical water models that yield reasonable liquid structure and dynamics, and to examine the progression of AIMD-predicted water behavior as the OH bond length varies. Water constrained at the optimal PBE gas phase geometry yields reasonable pair correlation functions. The predicted liquid phase pressure, however, is large ( approximately 8.0 kbar). Although the O-H bond in water should elongate when transferred from gas to the condensed phase, when it is constrained to 0.02, or even just 0.01 A longer than the optimal gas phase value, liquid water is predicted to be substantially overstructured compared to experiments. Zero temperature calculations of the thermodynamic properties of cubic ice underscore the sensitivity toward small variations in the O-H bond length. We examine the hydration structures of potassium, chloride, and formate ions in one rigid PBE water model. The results are in reasonable agreement with unconstrained AIMD simulations.  相似文献   

6.
The physical mechanisms behind hydrophobic hydration have been debated for over 65 years. Spectroscopic techniques have the ability to probe the dynamics of water in increasing detail, but many fundamental issues remain controversial. We have performed systematic first-principles ab initio Car-Parrinello molecular dynamics simulations over a broad temperature range and provide a detailed microscopic view on the dynamics of hydration water around a hydrophobic molecule, tetramethylurea. Our simulations provide a unifying view and resolve some of the controversies concerning femtosecond-infrared, THz-GHz dielectric relaxation, and nuclear magnetic resonance experiments and classical molecular dynamics simulations. Our computational results are in good quantitative agreement with experiments, and we provide a physical picture of the long-debated "iceberg" model; we show that the slow, long-time component is present within the hydration shell and that molecular jumps and over-coordination play important roles. We show that the structure and dynamics of hydration water around an organic molecule are non-uniform.  相似文献   

7.
8.
Antifreeze proteins (AFPs) are found in different species from polar, alpine, and subarctic regions where they serve to inhibit ice crystal growth by adsorption to ice surfaces. Computational methods have the power to investigate the antifreeze mechanism in atomic detail. Molecular dynamics simulations of water under different conditions have been carried out to test our water model for simulations of biological macromolecules in extreme conditions: very low temperatures (200 K) and at the ice/liquid water interface. We show that the flexible F3C water model reproduces properties of water in the solid phase (ice I(h)), the supercooled liquid phase, and at the ice/liquid water interface. Additionally, the hydration of the type III AFP from ocean pout was studied as a function of temperature. Hydration waters on the ice-binding surface of the AFP were less distorted and more tetrahedral than elsewhere on the surface. More ice-like hydrating water structures formed on the ice-binding surface of the protein such that it created an ice-like structure in water within its first hydration layer but not beyond, suggesting that this portion of the protein has high affinity for ice surfaces.  相似文献   

9.
The hydration of K(+) is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational costs. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K(+), such as the coordination structure, the bulk hydration free energy, and the self diffusion of K(+). It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K(+) agrees well with experiment and with more sophisticated computational models. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K(+) is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K(+) hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately.  相似文献   

10.
In this work, we performed Monte Carlo simulations on a lattice model for spontaneous amphiphilic aggregation, in order to study the orientational and hydrogen-bonding dynamics of water on different regions inside the micellar solution. We employed an associating lattice gas model that mimics the aqueous solvent, which presents a rich phase diagram with first- and second-order transition lines. Even though this is a simplified model, it makes possible to investigate the orientational dynamics of water in an equilibrium solution of amphiphiles, as well as the influence of the different phases of the solvent in the interfacial and bulk water dynamics. By means of extensive simulations, we showed that, at high temperatures, the behavior of the orientational relaxation and hydrogen bonding of water molecules in the bulk, first, and second hydration shells are considerable different. We observe the appearance of a very slow component for water molecules in the first hydration shell of micelles when the system reaches a high-density phase, consistent with previous theoretical and experimental studies concerning biological water. Also, at high temperatures, we find that water molecules in the second hydration shell of micelles have an orientational decay similar to that of bulk water, but with a generally slower dynamics. Otherwise, at low temperatures, we have two components for the orientational relaxation of bulk water in the low density liquid phase, and only a single component in the high density liquid (HDL) phase, which reflect the symmetry properties of the different phases of the solvent model. In the very dense region of water molecules in the first hydration shell of micelles at low temperatures, we find two components for the orientational relaxation on both liquid phases, one of them much slower than that in the single component of bulk water in the HDL phase. This happens even though our model does not present any hindrance to the water rotational freedom caused by the presence of the amphiphiles.  相似文献   

11.
The existence of a protein dynamic transition around 220 K is widely known and the central role of the protein hydration shell is now largely recognized as the driving force for this transition. In this paper, we propose a mechanism, at the molecular level, for the contribution of hydration water. In particular, we identify the key importance of rotational motion of the hydration water as a source of configurational entropy triggering (i) the 220 K protein dynamic crossover (the so-called dynamic transition) but also (ii) a much less intense and scarcely reported protein dynamic crossover, associated to a calorimetric glass transition, at 150 K.  相似文献   

12.
13.
Full‐quantum mechanical fragment molecular orbital‐based molecular dynamics (FMO‐MD) simulations were applied to the hydration reaction of formaldehyde in water solution under neutral conditions. Two mechanisms, a concerted and a stepwise one, were considered with respect to the nucleophilic addition and the proton transfer. Preliminary molecular orbital calculations by means of polarized continuum model reaction field predicted that the hydration prefers a concerted mechanism. Because the calculated activation barriers were too high for free FMO‐MD simulations to give reactive trajectories spontaneously, a More O’Ferrall–Jencks‐type diagram was constructed from the statistical analysis of the FMO‐MD simulations with constraint dynamics. The diagram showed that the hydration proceeds through a zwitterionic‐like (ZW‐like) structure. The free energy changes along the reaction coordinate calculated by means of the blue moon ensemble for the hydration and the amination of formaldehyde indicated that the hydration proceeds through a concerted process through the ZW‐like structure, whereas the amination goes through a stepwise mechanism with a ZW intermediate. In inspection of the FMO‐MD trajectories, water‐mediated cyclic proton transfers were observed in both reactions on the way from the ZW‐like structure to the product. These proton transfers also have an asynchronous character, in which deprotonation from the nucleophilic oxygen atom (or nitrogen atom for amination) precedes the protonation of the carbonyl oxygen atom. The results showed the strong advantage of the FMO‐MD simulations to obtain detailed information at a molecular level for solution reactions.  相似文献   

14.
Full-quantum mechanical fragment molecular orbital-based molecular dynamics (FMO-MD) simulations were applied to the hydration reaction of formaldehyde in water solution under neutral conditions. Two mechanisms, a concerted and a stepwise one, were considered with respect to the nucleophilic addition and the proton transfer. Preliminary molecular orbital calculations by means of polarized continuum model reaction field predicted that the hydration prefers a concerted mechanism. Because the calculated activation barriers were too high for free FMO-MD simulations to give reactive trajectories spontaneously, a More O'Ferrall-Jencks-type diagram was constructed from the statistical analysis of the FMO-MD simulations with constraint dynamics. The diagram showed that the hydration proceeds through a zwitterionic-like (ZW-like) structure. The free energy changes along the reaction coordinate calculated by means of the blue moon ensemble for the hydration and the amination of formaldehyde indicated that the hydration proceeds through a concerted process through the ZW-like structure, whereas the amination goes through a stepwise mechanism with a ZW intermediate. In inspection of the FMO-MD trajectories, water-mediated cyclic proton transfers were observed in both reactions on the way from the ZW-like structure to the product. These proton transfers also have an asynchronous character, in which deprotonation from the nucleophilic oxygen atom (or nitrogen atom for amination) precedes the protonation of the carbonyl oxygen atom. The results showed the strong advantage of the FMO-MD simulations to obtain detailed information at a molecular level for solution reactions.  相似文献   

15.
尿素是早已被人们认识的蛋白质变性剂,而氧化三甲胺则是最常用的蛋白质结构保护剂。虽然多年来被广泛应用在生物实验中,但是它们是如何在蛋白质结构形成中起作用,特别是氧化三甲胺是如何在高浓度尿素环境中起到抑制尿素蛋白变性作用的分子机制,至今仍然没有得到圆满解答。本文以单壁碳纳米管为模型疏水体系,采用分子动力学模拟研究尿素/氧化三甲胺混合溶液中纳米管内部水合性质,结果表明氧化三甲胺更易与水分子和尿素分子形成较强相互作用从而稳定了水溶液结构,这一结果亦表明了氧化三甲胺可以通过间接机制抵消尿素分子对于碳纳米管内部水合性质的影响。  相似文献   

16.
We report further molecular dynamics simulations on the structure of bound hydration layers under extreme confinement between mica surfaces. We find that the liquid phase of water is maintained down to 2 monolayer (ML) thick, whereas the structure of the K(+) ion hydration shell is close to the bulk structure even under D = 0.92 nm confinement. Unexpectedly, the density of confined water remains approximately the bulk value or less, whereas the diffusion of water molecules decreases dramatically. Further increase in confinement leads to a transition to a bilayer ice, whose density is much less than that of ice Ih due to the formation of a specific hydrogen-bonding network.  相似文献   

17.
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with X-ray data. The librational and vibrational spectra of water molecules in the first hydration shell are blue-shifted compared with those of pure liquid water, and the Tl-O stretching force constant was evaluated as 148 Nm(-1). Both structural and dynamical properties show a distortion of the first solvation shell structure. The second shell ligands' mean residence time was determined as 12.8 ps. The Tl(III) ion can be classified as "structure forming" ion; the calculated hydration energy of -986 +/- 9 kcal mol agrees well with the experimental value of -986 kcal mol.  相似文献   

18.
19.
The microstructures of pure water and aqueous NaCl solutions over a wide range of salt concentrations (0-4 m) under ambient conditions are characterized by X-ray scattering and molecular dynamics (MD) simulations. MD simulations are performed with the rigid SPC water model as a solvent, while the ions are treated as charged Lennard-Jones particles. Simulated data show that the first peaks in the O...O and O...H pair correlation functions clearly decrease in height with increasing salt concentration. Simultaneously, the location of the second O...O peak, the signature of the so-called tetrahedral structure of water, gradually disappears. Consequently, the degree of hydrogen bonding in liquid water decreases when compared to pure fluid. MD results also show that the hydration number around the cation decreases as the salt concentration increases, which is most likely because some water molecules in the first hydration shell are occasionally substituted by chlorine. In addition, the fraction of contact ion pairs increases and that of solvent-separated ion pairs decreases. Experimental data are analyzed to deduce the structure factors and the pair correlation functions of each system. X-ray results clearly show a perturbation of the association structure of the solvent and highlight the appearance of new interactions between ions and water. A model of intermolecular arrangement via MD results is then proposed to describe the local order in each system, as deduced from X-ray scattering data.  相似文献   

20.
We explore the prospects of a perturbation approach for predicting how weak attractive interactions affect collapse thermodynamics of hydrophobic polymers in water. Specifically, using molecular dynamics simulations of model polymers in explicit water, we show that the hydration structure is sensitive to the strength of the van der Waals attractions but that the hydration contribution to the potential of mean force for collapse is not. We discuss how perturbation theory ideas developed for small spherical apolar solutes need to be modified in order to account for the effect of attractions on the conformational equilibria of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号