首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.  相似文献   

2.
Characterization of SU-8 for electrokinetic microfluidic applications   总被引:1,自引:0,他引:1  
The characterization of SU-8 microchannels for electrokinetic microfluidic applications is reported. The electroosmotic (EO) mobility in SU-8 microchannels was determined with respect to pH and ionic strength by the current monitoring method. Extensive electroosmotic flow (EOF), equal to that for glass microchannels, was observed at pH > or =4. The highest EO mobility was detected at pH > or =7 and was of the order of 5.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer. At pH < or =3 the electroosmotic flow was shown to reverse towards the anode and to reach a magnitude of 1.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer (pH 2). Also the zeta-potential on the SU-8 surface was determined, employing lithographically defined SU-8 microparticles for which a similar pH dependence was observed. SU-8 microchannels were shown to perform repeateably from day to day and no aging effects were observed in long-term use.  相似文献   

3.
Zhang  Yu  Yang  Shuyuan  Zhu  Xiaoting  Zhai  Fei  Feng  Yiyu  Feng  Wei  Zhang  Xiaotao  Li  Rongjin  Hu  Wenping 《中国科学:化学(英文版)》2020,63(7):973-979
Doping is a critically important strategy to modulate the properties of organic semiconductors(OSCs) to improve their optoelectrical performances. Conventional bulk doping involves the incorporation of foreign molecular species(i.e., dopants) into the lattice of the host OSCs, and thus disrupts the packing of the host OSCs and induces structural defects, which tends to reduce the mobility and(or) the on/off ratio in organic field-effect transistors(OFETs). In this article, we report a highly efficient and highly controllable surface doping strategy utilizing 2D molecular crystals(2DMCs) as dopants to boost the mobility and to modulate the threshold voltage of OFETs. The amount of dopants, i.e., the thickness of the 2DMCs, is controlled at monolayer precision, enabling fine tuning of the electrical properties of the OSCs at unprecedented accuracy. As a result, a prominent increase of the average mobility from 1.31 to 4.71 cm~2 V~(-1) s~(-1) and a substantial reduction of the threshold voltage from -18.5 to -1.8 V are observed. Meanwhile, high on/off ratios of up to 10~8 are retained.  相似文献   

4.
We report a fabrication of field-effect transistors using the new organic semiconductors octathio[8]circulene and tetrathiotetraseleno[8]circulene . The maximum hole mobility of 9 x 10(-3) cm(2) V(-1) s(-1) is, most likely, limited by one-dimensional growth of and in thin films.  相似文献   

5.
The impact of electron transfer (ET) from a series of band edge modulated polymers to atmospheric oxygen is examined in connection with substrate oxidation prevention. Polymers with the highest occupied molecular orbital (HOMO) energy level below and above the oxygen energy level were tested and the former showed better efficiency. Furthermore, the oxidation prevention efficiency of a polymer with lower HOMO increased by two orders of magnitude, when the pores on the film were filled with spherical molecules, [6,6]-phenyl-C61-butyric acid methyl ester. We found that the polymer surface hydrophobicity has little or no influence on oxidation prevention. It is interesting to note that a polymer with a hole mobility of 8 × 10(-10) cm(2) V(-1) s(-1) showed a two-fold increase in oxidation prevention efficiency compared to a polymer with a hole mobility of 6 × 10(-5) cm(2) V(-1) s(-1). Over all, from the concerted approach, we conclude that a polymer devoid of pores with the HOMO energy level below oxygen and low charge carrier mobility is a suitable candidate for prevention of substrate oxidation/corrosion.  相似文献   

6.
A new truxene discotic liquid crystal possessing only three octyloxy chains (3C8OTRX) was studied on the mesomorphic and semiconducting properties to reveal that it exhibits a high drift mobility of positive carriers in the order of 10(-2) cm(2) V(-1) s(-1) in the hexagonal ordered columnar (Col(ho)) mesophase.  相似文献   

7.
We have reinvestigated the charge carrier transport properties in a liquid crystal of 2-(4'-heptyloxyphenyl)-6-dodecylthiobenzothiazole (7O-PBT-S12), for which the electronic conduction was first established in rodlike liquid crystals and for which the highest hole mobility in the smectic A (SmA) phase ever achieved was reported. We found that 7O-PBT-S12 exhibited three crystal phases, one of which appeared in a limited temperature range of 10 degrees just below the phase transition temperature from the SmA phase. In this crystal phase, nondispersive transient photohole currents were observed in time-of-flight experiments, and its hole mobility was determined to be 8 x 10(-3) cm(2)/Vs, slightly higher than that reported previously in the SmA phase. For the SmA phase, however, the hole mobility was 1 x 10(-4) cm(2)/Vs. Furthermore, we established the electron transport in the SmA phase of purified 7O-PBT-S12, whose mobility was the same as the hole mobility in that phase. In order to confirm generality of the new findings in 7O-PBT-S12, we investigated the carrier transport properties of its derivative having a short hydrocarbon chain, 2-(4'-heptyloxyphenyl)-6-butylthiobenzothiazole (7O-PBT-S4), and obtained comparable results. The present results correct a mistake in the previous report and give an idea of what a typical mobility in the SmA phase is. On the basis of these results, we discuss what determines the charge carrier mobility in smectic mesophases.  相似文献   

8.
A new straightforward synthesis of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives from readily available 2-methoxynaphthalenes is described. Thus, newly developed derivatives of DNTT showed very high field effect mobility in the vapor-processed field-effect transistors up to 8 cm(2) V(-1) s(-1).  相似文献   

9.
Chemical standards for positive ion mode electrospray ionization ion mobility spectrometry/mass spectrometry (ESI(+)-IMS/MS) are suggested. The low clustering tendency of tetraalkylammonium halides makes them ideal chemical standards for ESI(+)-IMS/MS. A homologous series of these compounds forms a useful external standard for instrument testing and resolution calibration of an IMS instrument. Selected homologues or a mixture of tetraalkylammonium halides can be used as mobility standards in the analytical runs. Absolute and relative reduced mobilities were calculated for C2--C8, C10 and C12 tetraalkylammonium halides. Absolute reduced mobilities in nitrogen were 1.88, 1.56, 1.33, 1.15, 1.02, 0.92, 0.84, 0.73, and 0.67 cm2 V(-1) s(-1), for C2--C8, C10 and C12 tetraalkylammonium halides, respectively. Relative reduced mobilities (relative to 2,6-di-tert-butylpyridine) for the same compounds were 1.20, 1.00, 0.855, 0.743, 0.658, 0.59, 0.54, 0.47, and 0.43, respectively.  相似文献   

10.
W Zhang  X Sun  P Xia  J Huang  G Yu  MS Wong  Y Liu  D Zhu 《Organic letters》2012,14(17):4382-4385
Two tetrabrominated intermediates obtained by bromination of naphthodithiophene in different solvents were used to construct novel highly π-extended butterfly-shaped heteroarenes 1-6, containing either an 8- or 10-fused ring. The solution-processed organic field-effect transistors based on compound 1 exhibited promising device performance with a hole mobility of 0.072 cm(2) V(-1) s(-1) and a current on/off ratio of 10(6) under ambient atmosphere.  相似文献   

11.
We introduce a novel siloxane-terminated solubilizing group and demonstrate its effectiveness as a side chain in an isoindigo-based conjugated polymer. An average hole mobility of 2.00 cm(2) V(-1) s(-1) (with a maximum mobility of 2.48 cm(2) V(-1) s(-1)), was obtained from solution-processed thin-film transistors, one of the highest mobilities reported to date. In contrast, the reference polymer with a branched alkyl side chain gave an average hole mobility of 0.30 cm(2) V(-1) s(-1) and a maximum mobility of 0.57 cm(2) V(-1) s(-1). This is largely explained by the polymer packing: our new polymer exhibited a π-π stacking distance of 3.58 ?, while the reference polymer showed a distance of 3.76 ?.  相似文献   

12.
Li R  Ma P  Dong S  Zhang X  Chen Y  Li X  Jiang J 《Inorganic chemistry》2007,46(26):11397-11404
A series of amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic poly(oxyethylene) heads and hydrophobic alkoxy tails {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8}Eu[Pc(OCnH2n + 1)8] (n = 6, 8, 10,12) (1-4) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8} and metal-free 2,3,9,10,16,17,23,24-octakis(alkoxy)phthalocyanine H2Pc(OCnH2n + 1)8 (n = 6, 8, 10,12) in the presence of Eu(acac)3.H2O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene (TCB). These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and have been electrochemically studied. With the help of the Langmuir-Blodgett (LB) technique, these typical amphiphilic triple-decker complexes have been fabricated into organic field effect transistors (OFET) with an unusual bottom contact configuration. The devices display good OFET performance with the carrier mobility for holes in the direction parallel to the aromatic phthalocyanine rings, which shows dependence on the length of the hydrophobic alkoxy side chains, decreasing from 0.46 for 1 to 0.014 cm2 V(-1) s(-1) for 4 along with the increase in the carbon number in the hydrophobic alkoxy side chains.  相似文献   

13.
Lei T  Zhou Y  Cheng CY  Cao Y  Peng Y  Bian J  Pei J 《Organic letters》2011,13(10):2642-2645
An efficient synthetic approach to a series of aceno[2,1,3]thiadiazole derivatives is described. 2-TIPS and 2-TES molecules exhibited different crystal packings, and 2-TIPS show good device performances with hole mobility up to 0.4 cm(2) V(-1) s(-1) and an average mobility of 0.15 cm(2) V(-1) s(-1) as the active material for organic field-effect transistors. All of the results demonstrate these aceno[2,1,3]thiadiazole derivatives as promising materials for optoelectronic devices.  相似文献   

14.
We report a new p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stille coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (~1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E(g)(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituents (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of ~0.6 cm(2) V(-1) s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.  相似文献   

15.
We present here the systematic synthesis and comparative physicochemical characterization of a series of regiochemically varied and core size extension-modulated arene(perfluoroarene)-thiophene oligomers. The molecules investigated are: 5,5'-diphenyl-2,2':5',2':5',2'-quaterthiophene (1), 5,5'-bis[1-[4-(thien-2-yl)phenyl]]-2,2'-dithiophene (2), 4,4'-bis[5-(2,2'-dithiophenyl)]-biphenyl (3), 5,5'-diperfluorophenyl-2,2':5',2':5',2'-quaterthiophene (4), 5,5'-bis[1-[4-(thien-2-yl)perfluorophenyl]]-2,2'-dithiophene (5), 4,4'-bis[5-(2,2'-dithiophenyl)]-perfluorobiphenyl (6), 5,5'-diperfluorophenyl-2,2':5',2'-tertthiophene (7), 5,5'-diperfluorophenyl-2,2'-dihiophene (8), and 5,5-diperfluorophenylthiophene (9). Trends in optical absorption and emission parameters, molecular structures as defined by single-crystal X-ray diffraction, as well as electrochemical redox processes are described. The morphologies and microstructures of the vapor-deposited films grown over a range of growth temperatures have also been characterized. Field-effect transistor (FET) measurements demonstrate that all of these materials are FET-active and, depending on the molecular architecture, exhibit comparably good p- or n-type mobility when optimum film microstructural order is achieved. A very large n-channel mobility of approximately 0.5 cm2/Vs with I(on)/I(off) ratios > 10(8) is achieved for films of 4.  相似文献   

16.
A membrane inlet 63Ni ion mobility spectrometer interfaced to a quadrupole mass spectrometer with permeation, exponential dilution approaches and syringe-based systems were used to characterise the ion mobility spectrometry (IMS) response to phosgene in dry air (water concentration less than 16.5 mg m(-3)). Phosgene produced a principle product ion in the negative mode with a reduced mobility of 2.16 cm2 V(-1) s(-1), with an unresolved artefact at higher concentrations having a reduced mobility of 2.32 cm2 V(-1) s(-1). The limit of detection of the system with a membrane inlet fitted was estimated to be less than 1 mg m(-3), with an upper limit to the dynamic range of 32 mg m(-3). Mass spectrometric data indicated the existence of [(H2O)nCl]-, [(H2O)nCl2]-; [(H2O)n(O2)Cl]-; [(H2O)n(O)Cl]-; and, [(H2O)n(CO2)Cl]-. The existence of two possible mechanisms for product ion formation is proposed: dissociative electron capture, as well as hydrolysis followed by electron capture. The effect of water contamination of the drying media within the ion mobility spectrometer was also investigated, and the effects were similar to those observed previously with studies on chlorine. Reduced mobility of the product ions was observed to decrease with increasing water contamination of the drying media used within the instrument, while limits of detection increased slightly to less than 2.4 mg m(-3), with no significant effect on dynamic ranges of response or resolution. Preliminary results also indicated a positive mode response for phosgene, albeit at significantly higher concentrations to those observed in the negative mode.  相似文献   

17.
As microfluidic technologies mature, increasingly complex solutions are employed, and accurate methods for the measurement of electroosmotic flow rates are becoming increasingly important. The methodologies of both a direct method and an indirect method of flow rate measurement are presented here. The direct method involves flow visualization using trace amounts of a caged fluorescent dye. The indirect method is based on the change in current that occurs when one solution in the microchannel is replaced by another. The results of concurrent and independent measurements of electroosmotic velocities of Tris-acetate with EDTA (TAE) and Tris-borate with EDTA (TBE) at 1x concentration in fused silica capillaries are presented. Although these buffers are commonly used in biological chemistry, these mobilities have not previously been reported. Strong agreement among data collected with both methods establishes confidence in the electroosmotic mobility values obtained and indicates that the current-based method, which requires less infrastructure than the direct method, can provide accurate flow rate measurements under these conditions. Constant electroosmotic mobilities of 4.90 x 10(-8) m(2) V(-1) s(-1) for TAE and 3.10 x 10(-8) m(2) V(-1) s(-1) for TBE were determined by tests in a range of electrical field strengths from 5 to 20 kV/m. A linear flow rate increase with applied field strength indicated that constant mobility and negligible Joule heating effects were present. Applicability and limitations of both the measurement methods and these buffers are discussed in the context of microfluidic applications.  相似文献   

18.
Density Functional Theory has been used to study the structural, electronic and charge-transport properties of two regio-regular head-to-tail polythiophene derivatives, i.e. poly(3-hexyl-thiophene), P3HT, and poly(3-oxyhexyl-thiophene), P3OHT. The effect of substituents on the electronic structure was analyzed by means of bandwidth, bandgap, effective mass, total and partial densities of states and crystal orbital overlap populations. Electronic couplings were estimated from band diagrams as the splitting of the valence band. The neutral and cationic states of isolated oligomers were optimized using the supercell approximation. The hole-transfer rates and mobilities were evaluated according to Marcus's theory. Results provide a compelling illustration of the effect of side chains on the crystal packing, electronic structure and charge-transport properties. Thus, the hole mobility calculated for the alkyl derivative was 0.15 cm(2) V(-1) s(-1) (experimental mobility is 0.10 cm(2) V(-1) s(-1)), while the alkoxy derivative has a theoretical mobility of 0.49 cm(2) V(-1) s(-1). The obtained results hopefully could motivate experimentalists to try out P3OHT for an improved charge carrier mobility.  相似文献   

19.
Organic thin film field-effect transistors (OTFTs) with mobility up to 1.0 cm2 V(-1) s(-1) and on/off ratio of 10(6)-10(8) as well as good environmental stability were demonstrated by using vanadyl phthalocyanine (VOPc), a pyramid-like compound with an ultra closely pi-stacked structure. The high performance, remarkable stability, low price, easy availability and nontoxicity of VOPc enabled it to be a promising candidate for OTFTs. Furthermore, we found that the mobility of the devices on OTS-modified Si/SiO2 substrates was 2 orders of magnitude higher than that of devices on Si/SiO2 substrates. Significantly, the relationship between field effect property and insulator surface property was explained from two new aspects of distribution of molecular orientation and interface compatibility, which might provide not only a useful model to explain why the surface modification with OTS could largely improve the field-effect performance but also a guide for rational optimization of device structure for higher performance. In addition, the field effect property of VOPc devices under vacuum, i.e., the oxygen doping effect on the VOPc devices, was measured. We found that the hole mobility decreased by several orders of magnitude with decreasing pressure. At a pressure below 10(-2) Pa, the device on OTS-modified substrates exhibited ambipolar conduction. These results indicated that the oxygen doping exerted essential effect on the field-effect property of VOPc, which was clearly distinct from that observed for pentacene-based OFETs.  相似文献   

20.
A family of alkali salts of octanuclear oxothiomolybdate rings has been synthesized by crystallization of the [Mo(8)S(8)O(8)(OH)(8)[HMO(5)(H(2)O)]](3-) (noted HMo(8)M(3-); M=Mo, W) and [Mo(8)S(8)O(8)(OH)(8)(C(2)O(4))](2-) (noted Mo(8)ox(2-)) anions in an aqueous solution of ACl (A=Li, Na, K, Rb). Single-crystal X-ray diffraction experiments have been performed showing that the alkali salts exhibit a similar three-dimensional structure. Disordered alkali ions form columns to which the anionic rings are anchored. Ionic-conductivity measurements on pressed pellets have revealed two different behaviors. The lithium salts of HMo(8)M(3-) (M=Mo, W) are moderately good proton conductors at room temperature (sigma=10(-5) S cm(-1)) and the profile of conductivity as a function of relative humidity shows that the conductivity is due to surface-proton motion (particle-hydrate-type mechanism). On the other hand, the lithium salt of Mo(8)ox(2-) competes with the best crystalline lithium conductors at room temperature (sigma=10(-3) S cm(-1)), and (7)Li NMR experiments confirm the mobility of the lithium ions along the one-dimensional channels of this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号