首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using ab initio calculations, we have studied the structural, electronic and elastic properties of M2GeC, with M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W. Geometrical optimizations of the unit cell are in agreement with the available experimental data. The band structures show that all studied materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Ge p hybridizations. The elastic constants are calculated using the static finite strain technique. The shear modulus C 44, which is directly related to the hardness, reaches its maximum when the valence electron concentration is in the range 8.41–8.50. We derived the bulk and shear moduli, Young’s moduli and Poisson’s ratio for ideal polycrystalline M2GeC aggregates. We estimated the Debye temperature of M2GeC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic constants of Ti2GeC, V2GeC, Cr2GeC, Zr2GeC, Nb2GeC, Mo2GeC, Hf2GeC, Ta2GeC and W2GeC compounds, and it still awaits experimental confirmation.  相似文献   

2.
Ab initio calculations were performed to investigate electronic and elastic properties of the newly discovered 7.5 K superconductor: layered Nb2InC. As a result, electronic bands, total and site-projected l—decomposed density of states at the Fermi level, shape of the Fermi surface for Nb2InC were obtained for the first time. Besides, independent elastic constants, bulk modulus, compressibility, shear modulus, Young’s modulus, Poisson’s ratio together with the elastic anisotropy parameters and indicator of brittle/ductile behavior of Nb2InC were evaluated and analyzed in comparison with the available data.  相似文献   

3.
The structural, elastic and thermodynamic characteristics of CeGa2 compound in the AlB2 (space group: P6/mmm) and the omega trigonal (space group: P-3m1) type structures are investigated using the methods of density functional theory within the generalized gradient approximation (GGA). The thermodynamic properties of the considered structures are obtained through the quasi-harmonic Debye model. The results on the basic physical parameters, such as the lattice constant, the bulk modulus, the pressure derivative of bulk modulus, the phase-transition pressure (P t ) from P6/mmm to P-3m1 structure, the second-order elastic constants, Zener anisotropy factor, Poisson’s ratio, Young’s modulus, and the isotropic shear modulus are presented. In order to gain further information, the pressure and temperature-dependent behavior of the volume, the bulk modulus, the thermal expansion coefficient, the heat capacity, the entropy, Debye temperature and Grüneisen parameter are also evaluated over a pressure range of 0–6 GPa and a wide temperature range of 0–1800 K. The obtained results are in agreement with the available experimental and the other theoretical values.  相似文献   

4.
We have investigated the structural, elastic, electronic, optical and thermal properties of c-SiGe2N4 by using the ultrasoft pseudopotential density functional method within the generalized gradient approximation. The calculated structural parameters, including the lattice constant, the internal free parameter, the bulk modulus and its pressure derivative are in agreement with the available data. The independent elastic constants and their pressure dependence, calculated using the static finite strain technique, satisfy the requirement of mechanical stability, indicating that c-SiGe2N4 compound could be stable. We derive the shear modulus, Young’s modulus, Poisson’s ratio and Lamé’s coefficients for ideal polycrystalline c-SiGe2N4 aggregate in the framework of the Voigt-Reuss-Hill approximation. We estimate the Debye temperature of this compound from the average sound velocity. Band structure, density of states, Mulliken charge populations and pressure coefficients of energy band gaps are investigated. Furthermore, in order to understand the optical properties of c-SiGe2N4, the dielectric function, refractive index, extinction coefficient, optical reflectivity and electron energy loss are calculated for radiation up to 40 eV. Thermal effects on some macroscopic properties of c-SiGe2N4 are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–2000 K. For the first time, the numerical estimates of the elastic constants and related parameters, and the thermal properties are performed for c-SiGe2N4.  相似文献   

5.
The elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Also, we have used the Engel and Vosko GGA formalism (GGA-EV) to improve the electronic band structure calculations. The calculated structural properties are in good agreement with available experimental and theoretical data. The elastic constants C ij are calculated using the total energy variation with strain technique. The shear modulus, Young’s modulus, Poisson’s ratio and the Lamé coefficients for polycrystalline KZnF3 aggregates are estimated in the framework of the Voigt-Reuss-Hill approximations. The ductility behavior of this compound is interpreted via the calculated elastic constants C ij . Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of bulk modulus, lattice constant, heat capacities and the Debye temperature with pressure and temperature are successfully obtained.  相似文献   

6.
A relation between the elastic moduli and Poisson’s ratio of crystalline and vitreous solids is considered. The feasibility of introducing the averaged bulk modulus, which has the same attributes as other elastic moduli, is substantiated. A relationship between the Grüneisen parameter and Poisson’s ratio is discussed.  相似文献   

7.
xSb2O3-40TeO2-(60 − x) V2O5 glasses with 0 ≤ x ≤ 10 (in mol%) have been prepared by rapid- melt quenching method. DSC curves of these ternary glasses have been investigated. The glass transition properties that have been measured and reported in this paper, include the glass transition temperature (T g ), glass transition width (ΔT g ), heat capacity change at glass transition (ΔC P ) and fragility (F). Thermal stability, Poisson’s ratio, fragility and glass forming tendency of these glasses have been estimated, to determine relationship between chemical composition and the thermal stability or to interpret the structure of glass. In addition, Makishima and Makenzie’s theory was applied for determination of Young’s modulus, bulk modulus and shear modulus, indicating a strong relation between elastic properties and structure of glass. Generally, results of this work show that glass with x = 0 has the highest shear, bulk and Young’s moduli which make it as suitable candidate for the manufacture of strong glass fibers in technological applications; but it should be mentioned that glass with x = 8 has higher handling temperature and super resistance against thermal attack.  相似文献   

8.
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.   相似文献   

9.
We have performed the first principles calculation by using the plane-wave pseudopotential approach with the generalized gradient approximation for investigating the structural, electronic, and elastic properties Na-As systems (NaAs in NaP, LiAs and AuCu-type structures, NaAs2 in MgCu2-type structure, Na3As in Na3As, Cu3P and Li3Bi-type structures, and Na5As4 in A5B4-type structure). The lattice parameters, cohesive energy, formation energy, bulk modulus, and the first derivative of bulk modulus (to fit to Murnaghan’s equation of state) of the related structures are calculated. The second-order elastic constants and the other related quantities such as Young’s modulus, shear modulus, Poisson’s ratio, sound velocities, and Debye temperature are also estimated.  相似文献   

10.
A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed.  相似文献   

11.
Bismuth-borate glasses doped with some rare earth ions were studied with respect to the density, molar volume and the elastic moduli, Poisson’s ratio, Debye temperature, microhardness, softening temperature, acoustic impedance, diffusion constant and latent heat of melting. Ultrasonic velocities were measured by the pulse echo overlap technique at a frequency of 10 MHz and at room temperature. From these velocities and density values, various elastic moduli were calculated. The correlation of elastic stiffness, the cross link density, and the fractal bond connectivity of these glasses are discussed. The derived experimental values of shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio for our glasses are compared with the theoretically calculated values in terms of the bond compression model and Makishima-Mackenize theory.  相似文献   

12.
The structural parameters of the alloys are obtained as non-magnetic cases for which justification is provided. The elastic coefficients and various moduli of the monocrystalline FeSe1−xTex system as a function of doping are predicted for the first time using density functional method. The bulk moduli, shear moduli, Young’s moduli, Poisson’s ratios, velocities of sound and Debye temperature of the corresponding poly-crystalline aggregates have been calculated and the results discussed.  相似文献   

13.
The structural stability, mechanical properties and thermodynamic parameters such as Debye temperature, minimum thermal conductivities of orthorhombic-A2N2O (A=C, Si and Ge) are calculated by first principles calculations based on density functional theory. The calculated lattice parameters, elastic constants of Si2N2O and Ge2N2O using PBEsol function are consisted with the experimental data and other calculated values. The full set elastic constants of the orthorhombic-A2N2O (A=C, Si and Ge) are calculated by stress–strain method. The mechanical moduli (bulk modulus, shear modulus and Young's modulus) are evaluated by the Voigt–Reuss–Hill approach. The orthorhombic-C2N2O exhibits larger mechanical moduli than the other two structures. The hardness of orthorhombic-A2N2O (A=C, Si and Ge) is evaluated according to the intrinsic hardness calculation theory of covalent crystal relying on Mulliken overlap population. The results indicate that the orthorhombic-C2N2O is a super hard material. Furthermore, the mechanical anisotropy, Debye temperature and minimum thermal conductivity of the orthorhombic-A2N2O (A=C, Si and Ge) have been estimated by empirical methods. The orthorhombic-Ge2N2O shows the lowest thermal conductivity, which may have useful applications as gas turbine engines and diesel engines.  相似文献   

14.
The thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN are investigated at ambient pressure and high temperature by using first-principles calculations method with the ultrasoft psedopotential scheme. The elastic constants calculations reveal β-GaN is mechanically stability at ambient pressure and high temperature. The elastic modulus (Poisson's ratio, shear modulus and Young's modulus) decreases with increasing temperature. The calculations of anisotropy show that β-GaN has a larger elastic anisotropy in Poisson's ratio, shear modulus, Young's modulus and Zener anisotropy index. In addition, when the temperature increases from 0 to 1500 K, the elastic anisotropy decreases for β-GaN. The quasi-harmonic Debye model is successfully applied to determine the thermodynamic properties at different pressures and temperatures. Using the quasi-harmonic Debye model, the thermodynamic properties including the Debye temperature, Grüneisen parameter, the heat capacity, adiabatic bulk modulus, and the thermal expansion coefficients of β-GaN are predicted under high temperature and high pressure.  相似文献   

15.
A. Bouhemadou   《Solid State Communications》2009,149(39-40):1658-1662
The structural and elastic properties of perovskite-type RCRh3, with R=Sc, Y, La and Lu, under pressure effects have been investigated using the pseudo-potential plane-wave method based on the density functional theory within the generalized gradient approximation. For monocrystalline RCRh3, the optimized lattice constants, elastic constants and directional elastic wave velocities are calculated and analyzed in comparison with the available experimental and theoretical data. An increase in the lattice constant has been found with increasing atomic size of the R element and a corresponding decrease in the hardness. The anisotropic elastic constants and directional elastic wave velocities increase linearly with increasing pressure. A set of elastic parameters and related properties, namely bulk and shear moduli, Young’s modulus, Poisson’s ratio, Lamé’s coefficients, average sound velocity and Debye temperature are predicted in the framework of the Voigt–Reuss–Hill approximation for polycrystalline RCRh3. We have found that the toughness of RCRh3 compounds can be improved at high pressure.  相似文献   

16.
The concentration dependences of the elastic constants of the two-dimensional Si x C1 − x system have been investigated with the use of the Harrison bonding-orbital method and the Keating model. The central and non-central force constants and the Grüneisen parameter have been considered by means of the bonding-orbital method. All quantities under consideration have been shown to exhibit a nonlinear behavior during the transition from graphene to silicene. A nontrivial role of the short-range repulsion has been discussed. The second-order and third-order elastic constants, the pressure dependences of the second-order elastic constants, as well as the Poisson’s ratio and Young’s modulus have been investigated in the Keating model. It has been found that the elastic constants and Young’s modulus change almost linearly upon the transition from graphene to silicene, whereas the other quantities under consideration exhibit nonlinearity.  相似文献   

17.
密度泛函理论研究高温高压下UO2弹性与热力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用第一性原理与准谐德拜模型研究UO2在高温高压条件下的弹性与热力学性能。UO2在高温高压下仍属离子型晶体,并且弹性性能计算表明,四角方向剪切常数在高温与高压下均保持稳定。高温下弹性常数C44没有明显变化,而高压下C44迅速增大。体积模量、剪切模量与杨氏模量均随压强增加而增大;高温条件下,体积模量、剪切模量与杨氏模量也未出现明显的降低,表明UO2在高温度高压下均可保持良好的力学性能。不同压强下,UO2定容热容均随温度迅速增大,并在1000 K 附近趋近于杜隆-佩蒂特极限。德拜温度则随温度降低,随压强升高。在低于室温条件下,热膨胀系数随温度急剧增加;温度继续增加,系数的增加趋势则逐渐变缓。计算结果还表明,UO2的热膨胀系数在相同条件下,远小于其他核材料。  相似文献   

18.
The mechanical, thermodynamical and elastic properties of Hg0.91Mn0.09Te compound are calculated by formulating an effective interionic interaction potential. This potential consists of the long-range Coulomb, three body force parameter, the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The estimated values of phase transition pressure have revealed reasonably good agreement with the available experimental data on the phase transition pressure P t = 11.5 GPa and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zincblende (B3) to rock salt (B1) structure. Later on, the Poisson’s ratio ν, the ratio R S/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and Debye temperature as functions of pressure is calculated. From Poisson’s ratio and the ratio R S/B it is inferred that Hg0.91Mn0.09Te is brittle in nature in both B3 phase and B1 phase. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of Hg0.91Mn0.09Te compounds and still awaits experimental confirmations.  相似文献   

19.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

20.
By the viscoelastic theory, the hydrostatic pressure and thermal loading simultaneously induced optical effects in tightly jacketed double-coated optical fibers in the long term are analyzed. Using the Laplace transformation method, close-form solutions for the microbending loss and refractive index changes are obtained in the transform domain. The results of the microbending loss are initially identical to those obtained by the elastic analysis, and then decrease gradually as time progresses. The microbending loss and refractive index changes of the glass fiber are functions of material properties of the coating layers and jacket. To minimize the microbending loss and refractive index changes in the long term, the viscosity ratio η31, Young’s modulus ratio E2/E1 and E3/E1, and ratio of Poisson’s ratio ν31 should be increased. Nevertheless, the ratio of Poisson’s ratio ν21 should be decreased. PACS 42.79.Wc; 61.20.Lc; 68.65.Ac  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号