首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fourier transform infrared (FT-IR) spectra of phthalimide and N-bromophthalimide have been recorded in the range of 4000-400 cm-1. With the hope of providing more and effective information on the fundamental vibrations, a normal coordinate analysis has been performed on phthalimide and N-bromophthalimide, by assuming C2v symmetry. Density functional theory (DFT)-Beck3-Lee-Yang-Parr (B3LYP) levels with 6-31G* and 6-311+G** basis sets have been employed in quantum chemical analysis. The computational frequencies are in good agreement with the observed results. The theoretical spectra obtained along with intensity data agree well with the observed spectra.  相似文献   

2.
The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

3.
Microwave spectra have been recorded for 1-phenyl-2-propanol, methamphetamine, and 1-phenyl-2-propanone from 11 to 24 GHz using a Fourier-transform microwave spectrometer. Only one spectrum from a single conformational isomer was observed for each species. The rotational transitions in the spectrum of 1-phenyl-2-propanone were split into separate transitions arising from the A- and E-torsional levels of the methyl rotor. The fit of the E-state transitions to a "high-barrier" internal rotation Hamiltonian determines V3 = 238(1) cm-1 and rotor-axis angles of thetaa = 87.7(5) degrees, thetab = 50.0(5) degrees, and thetac = 40.0(5) degrees. Ab initio optimizations (MP2/6-31G**) and single-point calculations (MP2/6-311++G**) were used to model the structures of 1-phenyl-2-propanol, methamphetamine, and 1-phenyl-2-propanone. The lowest energy conformations of these species were found to be stabilized by weak OH-pi, NH-pi, and CH-pi hydrogen-bonding interactions. Moments of inertia, derived from the model structures, were used to assign the spectra to the lowest energy conformation of each species. A series of MP2/6-31G* partial optimizations along the internal rotation pathway were used to estimate the barrier to methyl rotation to be 355 cm-1 for 1-phenyl-2-propanone.  相似文献   

4.
The FTIR and FT-Raman spectra of 2-amino-5-chloropyridine (ACP) has been recorded in the region 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of ACP were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311+G(2df,2p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

5.
Infrared spectra (4000-250 cm-1) of the liquid, amorphous, crystalline solids and solutions in liquid krypton and Raman spectra (2500-20 cm-1) of the liquid as well as the amorphous and crystalline solids of ethylbenzene and its deuterated analogue-ethylbenzene-d(10) have been recorded. The spectra indicate that in the liquid and amorphous solids a small amount of a second conformer is present, whereas only one conformer remains in the crystalline phases. Assignments of the observed band wave numbers are discussed by comparison with normal mode wave numbers and IR and RS intensities calculated from ab initio 6-31G force fields and optimised geometries for both conformers for two species. All of the normal modes of conformers have been assigned.  相似文献   

6.
用从头算方法HF/6-31G^*^*和密度函方法B3LYP/6-31G^*^*,对Si~2Cl~6分子的平衡几何构型进行优化,优化的结果与实验结果吻合得较好.并用上述两种不同的方法计算Si~2Cl~6分子的内旋转能垒,结果分别为8.786和6.694kJ/mol,其中DFT方法的计算结果与实验结果4.18kJ/mol吻合得较好.对Si~2Cl~6分子的振动基频进行计算.用HF/6-31G^*^*SQM力场所计算的频率理论值与实验值的平均误差为7.3cm^-^1,用B3LYP/6-31G^*^*未标度的力场所计算的频率理论值与实验值的平均误差为6.0cm^-^1.该密度泛函方法(B3LYP/~6-31G^*^*)的理论计算值比用HF/6-31G^*^*标度后的SQM力场计算的频率与实验值(除Si--Si键扭转振动基频之外的11条振动基频)吻合得更好.并给出了Si--Si键扭转振动基频的预测值。  相似文献   

7.
Fourier transform-infrared (4000-400 cm-1) and Raman (3500-50 cm-1) spectral measurements have been made for 6-methyl-4-bromomethylcoumarin. Equilibrium structures, harmonic vibrational frequencies, infrared intensities, and depolarization ratios have been computed at RHF/6-31G* and B3LYP/6-31G* levels of theory. Twisting CH2Br moiety in the geometry optimization leads to the most stable conformer lacking symmetry (C1). This is reflected in the richness of bands in the experimental spectra. A complete assignments of the bands, aided by the ab initio calculations, has been proposed for the 6-methyl-4-bromomethylcoumarin. Due to lack of symmetry, several normal vibrations have been found to be mixed ones.  相似文献   

8.
The vibrational spectra of 2-methyl piperazine (2MPZ) have been computed using B3LYP methodology and 6-31G* and 6-31G** basis sets. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 and 3500-100 cm(-1), respectively. A close agreement was achieved between the observed and calculated frequencies by employing normal coordinate calculations. The observed and simulated spectra were found to be well comparable.  相似文献   

9.
The molecular structure of methyl methanethiosulfonate, CH3SO2SCH3, has been determined in the gas phase from electron-diffraction data supplemented by ab initio (HF, MP2) and density functional theory (DFT) calculations using 6-31G(d), 6-311++G(d,p), and 6-311G(3df,3pd) basis sets. Both experimental and theoretical data indicate that although both anti and gauche conformers are possible by rotating about the S-S bond, the preferred conformation is gauche. The barrier to internal rotation in the CSSC skeleton has been calculated using the RHF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) methods as well as MP2 with a 6-31G(3df) basis set on sulfur and 6-31G(d) on C, H, and O. A 6-fold decomposition of the rotational barrier has been performed in terms of a Fourier-type expansion, enabling us to analyze the nature of the potential function, showing that the coefficients V1 and V2 are the dominant terms; V1 is associated with nonbonding interactions, and V2 is associated with hyperconjugative interactions. A natural bond orbital analysis showed that the lone pair --> sigma* hyperconjugative interactions favor the gauche conformation. Furthermore, the infrared spectra for the liquid and solid phases and the Raman spectrum for the liquid have been recorded, and the observed bands have been assigned to the vibrational normal modes. The experimental vibrational data, along with calculated theoretical force constants, were used to define a scaled quantum mechanical force field for the target system that enabled us to estimate the measured frequencies with a final root-mean-square deviation of 6 cm-1.  相似文献   

10.
The solid phase FT-IR and FT-Raman spectra of 4-hydroxy quinazoline and 2-hydroxy benzimidazole have been recorded in the regions 4000-400 and 3500-100 cm-1, respectively. Theoretical information on the optimised geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory using standard B3LYP/6-31G* level. This information was used in the assignment of the various fundamentals. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

11.
3,3-dimethyl-1-(trimethylgermyl)cyclopropene (I) was synthesised using a standard procedure. The IR and Raman spectra of I in the liquid phase were measured. The molecular geometry of I was optimised completely at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* force field was calculated and scaled using the set of scale factors transferred from those determined previously for scaling the theoretical force fields of 3,3-dimethylbutene-1 and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The assignments of the observed vibrational bands were performed using the theoretical frequencies calculated from the scaled HF/6-31G*//HF/6-31G* force field and the ab initio values of the IR intensities, Raman cross-sections and depolarisation ratios. The theoretical spectra are given. The completely optimised structural parameters of I and its vibrational frequencies are compared with corresponding data of related molecules.  相似文献   

12.
The experimental Raman and IR vibrational spectra of 3,3-dimethyl-1-(trimethylsilyl)cyclopropene in the liquid phase were recorded. Total geometry optimisation was carried out at the HF/6-31G* level and the HF/6-31G*//HF/6-31G* force field was computed. This force field was corrected by scale factors determined previously (using Pulay's method) for correction of the HF/6-31G*//HF/6-31G* force fields of 3,3-dimethylbutene-1, 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The theoretical vibrational frequencies calculated from the scaled quantum mechanical force field and the theoretical intensities obtained from the quantum mechanical calculation were used to construct predicted spectra and to perform the vibrational analysis of the experimental spectra.  相似文献   

13.
薛英  郭勇  徐学军  谢代前  鄢国森 《化学学报》2000,58(10):1254-1258
用多种密度泛函理论(DFT)方法(BLYP/6-31G^*^*,B3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)对吲哚分子的平衡几何构型进行了优化。在优化构型的基础上计算了吲哚分子的谐力场、振动基频和红外光谱强度。计算得到的振动频率与实验值比较平均偏差对四种计算方法(BLYP/6-31G^*^*,P3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)分别为16.3,40.5,45.1和26.4cm^-^1。BLYP/6-31G^*^*理论力场被用于吲哚分子的简正坐标分析计算中。根据振动率的势能分布(PEDs)对此分子的振动基频进行了理论归属。  相似文献   

14.
Experimental IR spectroscopic data for the N-H stretching mode frequencies for several types of tri-substituted ureas containing benzyl and/or phenyl substituents as well as theoretical results from B3LYP/6-31G(d,p) computations on selected compounds provide sufficient evidence to determine the conformational state of these molecules. Two types of N-H bands may be found the spectra: (a) A type band due to a classical trans conformation (trans I) of the CONH structure; (b) B type band arising from an alternative trans form (trans II), in which the N-H band is involved in a hydrogen bond like interaction with the aromatic ring at the neighbouring nitrogen atom (benzyl or phenyl substituents). The N-H band of trans ICONH structure is observed at frequencies higher than 3460 cm-1, the actual position depending on weather the non-substituted N-H group is linked to aryl or alkyl substituents. The N-H band of the trans II rotameric structure is observed at 3430-3420 cm-1.  相似文献   

15.
Density functional theory (DFT), using the B3-LYP/6-31G(d,p) method have been used to investigate the conformation and vibrational spectra of aminopropylsilanetriol (APST) NH2CH2CH2CH2Si(OH)3. The potential function for CCCSi torsion gives rise to two distinct conformers trans and gauche. The predicted energy of the more stable trans conformer is 337 cm-1 less than the energy of gauche conformer. The calculated barriers to the conformation interchange are: 1095, 2845 and 438 cm-1 for the trans to gauche, gauche to gauche and gauche to trans conformers, respectively. For the trans conformer the potential energy curve for the Si(OH)3 groups torsion in APST has been calculated changing the HOSiC dihedral angle. The barrier for the internal rotation of 3065 cm-1 has been obtained. The optimized molecular structure of APST dimer calculated for trans conformer has a SiOSi angle of 143.2 degrees, and a SiOSi bond length of 0.164 nm. A complete vibrational assignment for both conformers as well as for trans-dimer is supported by the normal coordinate analysis, calculated IR intensities as well as Raman activities. On the basis of the results, the vibrational spectra of APST aqueous solution and APST polymer have been analyzed. The average error between the observed and calculated frequencies is 14 cm-1.  相似文献   

16.
In this article we studied the strong intramolecularly hydrogen-bonded system 4-methoxypicolinic acid N-oxide. The potential energy surface V = V(rOH,rOO) and the corresponding dipole moment function were calculated using the DFT B3LYP/6-31+G(d,p) level of approximation. The time-independent vibrational Schr?dinger equation was solved using a rectangular grid basis set and shifted Gaussian basis set. The vibrational spectrum and metric parameters were also calculated. Effects of deuteration were considered. The calculated vibrational spectra were compared with the experimental spectra. The vibrational transition corresponding to asymmetric O-H stretching that occurs at about 1400 cm-1 compares well with the experimentally assigned O-H asymmetric stretching band centered at 1380 cm-1. The corresponding asymmetric O-D stretching band was predicted to be at 1154 cm-1, while the experimental O-D band was not assigned due to its very low intensity. Several overtones and hot transitions of significant intensities were located in the vicinity of the fundamental O-H stretching frequency, effectively broadening the infrared absorption attributed to the O-H stretching mode. This is in a good agreement with the observed broad protonic absorptions found in the infrared spectra of the title compound and its analogs. We have shown that the Gaussian basis set is the method of choice for a two-dimensional vibrational problem that requires several hundreds of vibrational basis functions and when high accuracy of the eigenvalues is required or when extending the calculations to more vibrational degrees of freedom. We have also demonstrated that for a large number of basis functions the Gramm-Schmidt orthogonalization procedure outperforms symmetric and canonical orthogonalization schemes.  相似文献   

17.
Infrared multiphoton dissociation spectra of three homogeneous and two heterogeneous proton-bound dimers were recorded in the gas phase. Comparison of the experimental infrared spectra recorded in the fingerprint region of the proton-bound dimers with spectra predicted by electronic structure calculations shows that all modes which are observed contain motion of the proton oscillating between the two monomers. The O-H-O asymmetric stretch for the homogeneous dimers is shown to occur at around 800 cm-1. As expected, the O-H-O asymmetric stretching modes for the heterogeneous proton-bound dimers are observed to shift to significantly higher energy with respect to those for the homogeneous proton-bound dimers due to the asymmetry of the O-H-O moeity. This shift is shown to be predictable from the difference in proton affinities between the two monomers. Density functional predictions of the infrared spectra based on the harmonic oscillator model are demonstrated to predict the observed spectra of the homogeneous proton-bound dimers with reasonable accuracy. Calculations of the structure and infrared spectrum of protonated diglyme at the B3LYP/6-31+G** level and basis also agree well with an infrared spectrum recorded previously. For both heterogeneous proton-bound dimers, however, the predicted spectra are blue-shifted with respect to experiment.  相似文献   

18.
Decabromodiphenyl ether (BDE-209), the major congener in the high volume industrial flame retardant mixture "DecaBDE", has become a ubiquitous environmental contaminant. In the present work, combined experimental and theoretical studies have been undertaken on the structure and vibrational spectra of BDE-209. The FT-IR (400-4000 cm-1) and FT-Raman spectra (100-4000 cm-1) of BDE-209 were recorded, while density functional B3LYP calculations were employed in conjunction with the 6-31G(d) basis set for investigating the corresponding geometric structure and vibrational spectroscopic properties. Besides, the detailed interpretations of fundamental vibrations were performed on the basis of experimental results and potential energy distribution (PED) of the vibrational modes. Optimized structures of the title compound were interpreted and compared with the earlier reported experimental values, which yield good agreement. Finally, the measured and calculated harmonic vibrational wavenumbers were compared with each other, and they were found to be in good accordance.  相似文献   

19.
Structural aspects of proton-bound dimers composed of amino acids with aliphatic side chains are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. Features in the IRMPD spectra in the 700-2,000 cm-1 range are due primarily to C=O stretching, NH2 bending, and COH bending. It was possible to distinguish between isomeric structures by comparing the experimental IRMPD spectra and those predicted using B3LYP/6-31+G(d,p). It was possible, based on the calculations and IRMPD spectra, to assign the experimental spectrum of the glycine proton-bound dimer to a structure which was slightly different from that assigned by previous spectroscopic investigations and in agreement with recent thermochemical studies. Since all proton-bound dimers studied here, composed of the different amino acids, have very similar spectra, it is expected that they also have very similar lowest-energy structures including the mixed alanine/glycine proton-bound dimer. In fact, the spectra are so similar that it would be very challenging to distinguish, for example, the glycine proton-bound dimer from the alanine or valine proton-bound dimers in the 700-2,000 cm-1 range. According to the calculated IR spectra it is shown that in the approximately 2,000-3,200 cm-1 range differentiating between different structures as well as different proton-bound dimers may be possible. This is due mainly to differences in the asymmetric stretch of the binding proton which is predicted to occur in this region.  相似文献   

20.
The enantiomers of 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid were resolved on a chiral HPLC column and investigated using mid-infrared vibrational circular dichroism (VCD). Experimental infrared vibrational absorption and VCD spectra were measured in CDCl3 solution in the 2000-900 cm-1 region and compared with the ab initio predictions of absorption and VCD spectra. The predicted spectra were obtained with density functional theory using B3LYP/6-31G* basis set for the stable and dominant conformers. But the predicted spectra did not provide unambiguous structural information due to intermolecular hydrogen bonding in solution. To eliminate the hydrogen bonding effects, the acids were converted to the corresponding methyl esters and the experimental absorbance and VCD spectra of methyl esters were measured. B3LYP predicted spectra were also obtained for the stable and dominant conformers of the esters. From a comparison of the experimental VCD spectra of methyl esters with corresponding ab initio predictions, the absolute configurations of esters, and therefore of their parent acids, are unambiguously determined to be (+)-(R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号