首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
建立了常压火焰离子化质谱(Ambient flame ionization mass spectrometry,AFI-MS)快速分析食用植物油(橄榄油、芝麻油、花生油和葵花籽油)的方法。AFI-MS检出食用植物油(橄榄油、芝麻油、花生油和葵花籽油)中的26种甘油三酯和11种甘油二脂。AFI-MS分析显示,不同的食用植物油(橄榄油、芝麻油、花生油和葵花籽油)得到的质谱图轮廓信息不同。通过对不同食用植物油的甘油三酯相对峰强度进行分析,可初步归纳出食用植物油的类型。AFI-MS分析食用植物油的操作简单,普通的打火机就可以作为离子源用于食用植物油的分析。这种便捷的离子化技术可以用于食用植物油的快速分析。  相似文献   

2.
毛锐  王欣  史然 《分析测试学报》2017,36(3):372-376
应用主成分分析(Principal component analysis,PCA)和聚类分析法(Cluster analysis,CA)对9种(27个)常见食用植物油及100个餐饮废油的低场核磁共振(Low-field nuclear magnetic resonance,LF-NMR)(T2)弛豫特性数据进行分析。结果表明:在正常食用油种类区分方面,主成分分析的效果较优,9种食用油在主成分分布图上按种类正确分组,边界清晰。而在正常食用油与餐饮废油的区分方面,聚类分析效果较优,引入30个待测样本后,聚类分析(127个样品,欧式距离=5)的正确率为94.49%,分析误判率为5.51%,分组效果良好。LF-NMR结合化学模式识别可实现对油脂种类及餐饮废弃油脂的鉴别。  相似文献   

3.
电感耦合等离子体质谱法测定食用植物油中的磷和硅   总被引:1,自引:0,他引:1  
建立了电感耦合等离子体串联质谱(ICP-MS/MS)准确测定食用植物油中的P和Si的方法.以HNO3+H2O2混合酸经密闭微波消解系统处理植物油样品,向碰撞反应池(CRC)中分别通入O2和H2,P与O2反应,利用O2质量转移,通过测定子离子31P16O+测定P,而Si不与H2发生反应,利用H2原位质量反应消除质谱干扰,显著改善了分析结果的准确度.分别考察了不同O2和H2流速对31P16O+和28Si+信号强度和背景等效浓度(BEC)的影响,确定了最佳O2和H2流速.在优化的条件下,测得31P16O+和28Si+的检出限分别为0.043和0.66 μg/L.采用本方法分析美国国家标准与技术研究院提供的标准参考物质润滑油(SRM 1848),结果表明,测定值与验证值无显著性差异.采用本方法分析来自中国不同产地的5种植物油(分别为油菜籽油、葵花籽油、花生油、玉米油和大豆油),结果表明,5种植物油中花生油的P含量最高,大豆油的Si含量最高.  相似文献   

4.
电感耦合等离子体发射光谱法测定植物油中的磷   总被引:2,自引:0,他引:2  
用电感耦合等离子体发射光谱法(ICP-AES)测定了植物油中的磷.采用多谱线拟合技术(MSF)校正了铜对P213.617 nm和P214.914 nm光谱干扰.比较了活性炭炭化灰化法和微波消解法两种样品前处理方法对分析结果的影响.结果表明这两种前处理方法所得结果都能与国标磷钼蓝分光光度法的分析结果吻合,其中活性炭炭化灰化法的方法检出限(0.053 mg/kg)较微波消解法的方法检出限(0.42 mg/kg)更低,所以对低含量的磷的检测结果其相对误差及精密度更好.该法应用于植物油中磷的测定.  相似文献   

5.
GC-IMS技术结合化学计量学方法在食用植物油分类中的应用   总被引:1,自引:0,他引:1  
陈通  陆道礼  陈斌 《分析测试学报》2017,36(10):1235-1239
建立了一种快速、无损分析食用植物油中挥发性有机物质的顶空进样/气相色谱-离子迁移谱(GC-IMS)联用方法。以芝麻油、菜籽油、山茶油共56个样品为研究对象,量取2 mL待测油样于标准样品瓶中,并用磁帽密封,直接进行GC-IMS分析检测。结果表明,基于GC-IMS三维谱中对应挥发性有机物质的特征峰强度可以有效表征不同类植物油的样品信息,选取对应三维谱中40个特征峰的强度作为变量,进行主成分(PCA)信息降维后,采用k最近邻(kNN)算法建立植物油种类的判别模型,训练集的识别率达到100%,预测集中仅有1个山茶油样品被误判成芝麻油样品,预测集的识别率达到94.44%。GC-IMS联用分析技术简单、快速、无损,可用于食用植物油等其他食品、农产品种类的快速分类识别。  相似文献   

6.
建立了超高效合相色谱-质谱(UPC2-MS)快速分析6种食用植物油(玉米油、葵花籽油、大豆油、茶油、菜籽油、花生油)中棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸等5种常见脂肪酸的方法,并比较了这6种食用油中上述5种脂肪酸的含量差异。采用皂化反应对植物油进行前处理,以ACQUITY UPC2 BEH 2-EP色谱柱(100 mm×2.1 mm, 1.7 μm)为分析柱,以超临界CO2-甲醇/乙腈(1:1, v/v)为流动相进行梯度洗脱,流速为0.8 mL/min。在电喷雾负离子模式下进行检测,外标法定量。结果表明:5种脂肪酸标准物质在0.5~100 mg/L范围内呈现良好的线性关系,相关系数为0.9985~0.9998,定量限(S/N≥10)为0.15~0.50 mg/L;在3个添加水平下,样品的加标回收率为89.61%~108.50%;方法重复性的相对标准偏差(RSD)为0.69%~3.01%。该方法简单、快速、分离效果好,无需对脂肪酸样品进行衍生化,已成功地用于玉米油、葵花籽油、橄榄油、茶油、大豆油和花生油等6种食用油中常见脂肪酸含量的测定。  相似文献   

7.
This work presents a method for an efficient differentiation of olive oil and several types of vegetable oils using chemometric tools. Triacylglycerides (TAGs) profiles of 126 samples of different categories and varieties of olive oils, and types of edible oils, including corn, sunflower, peanut, soybean, rapeseed, canola, seed, sesame, grape seed, and some mixed oils, have been analyzed. High-performance liquid chromatography coupled to a charged aerosol detector was used to characterize TAGs. The complete chromatograms were evaluated by PCA, PLS-DA, and MCR in combination with suitable preprocessing. The chromatographic data show two clusters; one for olive oil samples and another for the non-olive oils. Commercial oil blends are located between the groups, depending on the concentration of olive oil in the sample. As a result, a good classification among olive oils and non-olive oils and a chemical justification of such classification was achieved.  相似文献   

8.
建立了食用油中甘油三酯的大气压化学电离-质谱直接分析检测方法.在考察实验条件影响的基础上,选择乙腈作为溶剂,正离子检测模式,进样流速为800 μL/h,喷雾器温度250℃,电晕针电流为5000 nA.用本方法对10种食用油进行分析,结果表明,植物油与动物油之间差异较大.经主成分分析,选择m/z 857.76与m/z 881.76峰强度比作为指标,重复性RSD<5%,可直接识别出玉米油中掺杂5%的猪油.用碰撞诱导解离(CID)实验初步鉴别了食用油的3个特征峰.利用本方法对泔水油样品和煎炸油样品进行分析,结果泔水油样品中含有植物油和动物油,而煎炸油样品也与商品食用油存在差异.本方法可用于食用油样品的快速筛查.  相似文献   

9.
SPME/GC-MS鉴别地沟油新方法   总被引:3,自引:0,他引:3  
采用固相微萃取(SPME)气相色谱-质谱联用(GC-MS)技术,研究了油脂内源及外源物质的微量化学成分。结果发现:纯正花生油和大豆油不含反式脂肪酸,地沟油含有反式脂肪酸trans-C18∶1、trans-C18∶2;纯正花生油和大豆油中含有正己醛、正壬醛和正癸醛等杂质,而地沟油中除了这几种醛类外还含有乙酸、3-丁烯腈、2,5-二甲基吡嗪等特征杂质成分。通过测定内源性物质和外源性物质的存在,两种检测结果互相印证,综合判断,最终可确定是否为地沟油,据此首次建立了SPME/GC-MS鉴别地沟油的新方法。该方法不但可用于地沟油的鉴别,还可用于掺假食用油的检测。  相似文献   

10.
A simple, quick and nontoxic analytical method for the simultaneous determination of five synthetic antioxidants [t-butyl-4-hydroxyanisole (BHA), 2,6-di-t-butyl-hydroxytoluene (BHT), t-butyl hydroquinone (TBHQ), ethoxyquin (EQ) and 2,6-di-tert-butyl-4-hydroxymethyl-phenol (Ionox 100)] in edible vegetable oil has been developed. The analytes were extracted by ethanol, then separated and detected by GC–MS. Extraction conditions such as volume of ethanol required, mixing time and number of extractions were investigated and optimized by an orthogonal array experimental design. The five compounds behaved linearly in the 0.100∼20.0 mg/L concentration range, and the limits of detection (LOD) for BHA, BHT, TBHQ, EQ and Ionox-100 were 1.00, 0.92, 11.5, 0.83 and 1.39 μg/L, respectively. The recoveries at the tested concentrations of 1.00, 20.0 and 100 mg/kg were 75.6∼123%, with coefficients of variation <10.0%. The proposed procedure was successfully applied to the simultaneous analysis of the five antioxidants in soybean oil, tea oil, edible blended oil, rap oil, peanut oil, peanut blended oil and sesame oil samples purchased from local supermarkets.  相似文献   

11.
Y. Le Dréau  N. Dupuy  D. Ollivier 《Talanta》2009,77(5):1748-172
One of the most suitable analytical techniques used for edible oil quality control is Fourier transform mid infrared spectroscopy (FT-MIR). FT-MIR spectroscopy was used to continuously characterize the aging of various edible oils thanks to a specific aging cell. There were differences in the spectra of fresh and aged oils from different vegetable sources, which provide the basis of a method to classify them according to the oxidative spectroscopic index value. The use of chemometric treatment such as multivariate curve resolution-alternative least square (MCR-ALS) made it possible to extract the spectra of main formed and degraded species. The concentration profiles gave interesting information about the ability of the various oils to support the oxidative treatment and showed that all oils present the same aging process. Both methods led to concordant results in terms of induction times determined by the oxidative spectroscopic index and the appearance of oxidation products revealed by MCR-ALS.  相似文献   

12.
金静  陈吉平  田玉增  邹黎黎  王龙星  李芳 《色谱》2013,31(6):556-560
结合非正常油脂(地沟油)的来源(加热植物油和动物油)及反映其不同来源的重要特征指示物,即连接在甘油酯上的十一烷酸和13-甲基十四烷酸,建立了内标法测定油脂中甘油酯上十一烷酸和13-甲基十四烷酸的方法。多维气相色谱-质谱采用不分流进样和选择性切割可以实现在线净化和富集,提高分析的灵敏度和分离度。十一烷酸和13-甲基十四烷酸的方法检出限分别达到0.070、0.006 mg/kg。此外,研究发现绝大多数正常植物油中十一烷酸和13-甲基十四烷酸的含量比非正常油脂中二者的含量低。通过待测油脂中十一烷酸和13-甲基十四烷酸的含量可以在一定程度上推断食用植物油的品质。  相似文献   

13.
Hydrocarbons, an important part of the minor constituents belonging to vegetable oils are reviewed. Their importance, origin, characterization and detection in edible vegetable oils are considered. The determination of some of them as a means of establishing oil quality and genuineness is also highlighted. The official methodologies, as well as the most commonly procedures used for isolation and analysis are reviewed. Furthermore, novel procedures applying new techniques for determining those compounds are also presented.  相似文献   

14.
建立了气相色谱-质谱(GC-MS)同时测定植物油中α-、β-、γ-、δ-生育酚和α-、β-、γ-、δ-生育三烯酚等8种维生素E的分析方法。植物油样品经甲醇超声提取、浓缩、定容,在分时段选择离子监测(SIM)模式下分离分析,采用外标法进行定量。结果表明,8种维生素E可实现基线分离;在0.01~1 mg/L范围内,所有目标物均呈良好线性关系,相关系数均大于0.99;检出限和定量限分别为0.03~0.25 mg/kg和0.10~0.83 mg/kg;在芝麻油中分别添加10、50和250 mg/kg 3个水平的8种维生素E进行加标试验,平均回收率为87.5%~107.4%,相对标准偏差(RSD)≤ 7.5%。所建立的方法简单、准确、可靠,且灵敏度高,可用于测定植物油中8种维生素E的含量。采用上述方法对芝麻油、大豆油、菜籽油、葵花籽油、花生油、玉米油和棕榈油等7种共75个植物油样品中维生素E的含量进行测定。结果显示,芝麻油与其他6种植物油中的8种维生素E的组成和含量均有显著差异性,因此该方法可作为芝麻油掺入其他植物油的特征鉴定指标。  相似文献   

15.
Among vegetable oils, virgin olive oil (VOO) has nutritional and sensory characteristics that to make it unique and a basic component of the Mediterranean diet. The importance of VOO is mainly attributed both to its high content of oleic acid a balanced contribution quantity of polyunsaturated fatty acids and its richness in phenolic compounds, which act as natural antioxidants and may contribute to the prevention of several human diseases. The polar phenolic compounds of VOO belong to different classes: phenolic acids, phenyl ethyl alcohols, hydroxy-isochromans, flavonoids, lignans and secoiridoids. This latter family of compounds is characteristic of Oleaceae plants and secoiridoids are the main compounds of the phenolic fraction. Many agronomical and technological factors can affect the presence of phenols in VOO. Its shelf life is higher than other vegetable oils, mainly due to the presence of phenolic molecules having a catechol group, such as hydroxytyrosol and its secoiridoid derivatives. Several assays have been used to establish the antioxidant activity of these isolated phenolic compounds. Typical sensory gustative properties of VOO, such as bitterness and pungency, have been attributed to secoiridoid molecules. Considering the importance of the phenolic fraction of VOO, high performance analytical methods have been developed to characterize its complex phenolic pattern. The aim of this review is to realize a survey on phenolic compounds of virgin olive oils bearing in mind their chemical-analytical, healthy and sensory aspects. In particular, starting from the basic studies, the results of researches developed in the last ten years will be focused.  相似文献   

16.
Carbonyl value in monitoring of the quality of used frying oils   总被引:1,自引:0,他引:1  
In this study, a set of frying oil samples of different compositional properties but passed qualitative and quantitative standards, which were of various vegetable oil sources (individually or as blends), were obtained from seven of big oil factories in Iran. Before starting the frying process, all the frying oils had carbonyl values (CV) higher than 2 micromol g(-1). The CV of most frying oils linearly increased until the end of the frying process, whereas for some of them, the CV increased and reached a maximum and then decreased to some extent. However, in a set of frying oil samples on average, the CV linearly increased as the frying time increased. There was a linear relationship between the CV and total polar compounds (TPC) throughout the frying process with a high determination coefficient (R(2)=0.9747). The values found for carbonyl compounds of the frying oils during frying process ranged from 7.76+/-0.00 to 123.45+/-3.70 micromol g(-1). Assuming that the limit of acceptance for TPC is 24%, this was roughly corresponded to 43.50 micromol g(-1) for CV.  相似文献   

17.
Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils.  相似文献   

18.
An analytical method for the sequential detection, identification and quantitation of extra virgin olive oil adulteration with four edible vegetable oils--sunflower, corn, peanut and coconut oils--is proposed. The only data required for this method are the results obtained from an analysis of the lipid fraction by gas chromatography-mass spectrometry. A total number of 566 samples (pure oils and samples of adulterated olive oil) were used to develop the chemometric models, which were designed to accomplish, step-by-step, the three aims of the method: to detect whether an olive oil sample is adulterated, to identify the type of adulterant used in the fraud, and to determine how much aldulterant is in the sample. Qualitative analysis was carried out via two chemometric approaches--soft independent modelling of class analogy (SIMCA) and K nearest neighbours (KNN)--both approaches exhibited prediction abilities that were always higher than 91% for adulterant detection and 88% for type of adulterant identification. Quantitative analysis was based on partial least squares regression (PLSR), which yielded R2 values of >0.90 for calibration and validation sets and thus made it possible to determine adulteration with excellent precision according to the Shenk criteria.  相似文献   

19.
In this study,a method based on low temperature purification(LTP) coupled with liquid chromatography-tandem mass spectrometry(LC-MS/MS) was developed for the determination of abamectin(ABA) and ivermectin(IVR) in edible oils.ABA and IVR were extracted using conventional liquid-liquid extraction followed by purification via precipitation of interfering fatty components at low temperature without an additional cleanup step.LTP is simple,easy to use,labour-saving and cost effective,and requires reduced amounts of organic solvent.The linear ranges of ABA and IVR were 5-1000 μg/L using matrix-matched standards.Limits of detection(LOD) and limits of quantification(LOQ)were in the range of 0.1-0.4 μg/kg and 0.3-1.3 μg/kg,respectively.The LOQs were below the strictest maximum residue limits established by Codex Alimentarius Commission.Recoveries at three spiked levels of 10,20 and 100 μg/kg in peanut oil,corn oil,olive oil,soybean oil and lard ranged from 71.1%to119.3%with relative standard deviations of 3.2%-10.3%,which were in agreement with those obtained by the solid phase extraction method.The proposed method was utilized in the analysis of 10 edible oil samples from local market and neither ABA nor IVR was detected.As far as we know,this is the first time that LTP is applied to the determination of avermectins in edible oils.  相似文献   

20.
Conventional methods have been proposed to determine thermal properties of edible vegetable oils. The evaluation of the applicability of DSC and microwave oven (MO) methods to determine the specific heat capacities of the edible vegetable oils was performed. It was observed that the specific heat capacities of each edible oil increased as a function of the saturation of the fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号