首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The kinetics and mechanism of the liquid-phase oxidation of cyclohexane with molecular oxygen in the presence of the additives of propionic aldehyde are studied at 303.0, 322.5, and 341.5 K by measuring the rates of oxygen and propionic aldehyde consumption and the yields of the main reaction products (cyclohexanol (COL), cyclohexanone (CON), cyclohexyl hydroperoxide, and propionic acid and peracid). A kinetic scheme is proposed and rate constants of elementary reactions are estimated based on the analysis of their rates and the yields of the main cyclohexane products. The key reactions of the main steps (including chain initiation, propagation, and termination) are determined. An increase in the rate of cyclohexane oxidation and the yield of the target products (cyclohexanol, cyclohexanone, and cyclohexyl hydroperoxide) in the presence of propionic aldehyde suggests that highly active acylperoxy radicals participate in chain propagation. The [CON]/[COL] ratio indicates that these products are mainly formed in chain propagation. The strong effect of the Baeyer-Villiger rearrangement on both the rate of oxygen consumption and the yield of the target products at the initial stages of the process and at high propionic aldehyde concentrations is explained.  相似文献   

2.
Catalyst Design for Methacrolein Oxidation to Methacrylic Acid   总被引:5,自引:0,他引:5  
Stytsenko  V. D.  Lee  W. H.  Lee  J. W. 《Kinetics and Catalysis》2001,42(2):212-216
Heteropoly compounds (HPCs) with the general formula CsMHPVMo11O40are prepared and tested as catalysts. The influence of elements entering the formula on the catalyst properties is studied: Cs defines the acidity and specific area, V controls the selectivity, and the transition metal M defines the mobility of oxygen in the bulk and the catalyst activity. The mechanism of methacrolein oxidation over HPCs is investigated. Using the response method and mass spectrometry of the reaction mixture, it is shown that only the catalyst oxygen atoms take part in the formation of methacrylic acid and that the transport of active oxygen to adsorbed methacrolein plays a key role in the oxidation process. A correlation between the HPC activity and the redox ability of the metal cation M n+ M n+ i (i= 1 or 2) is found. New catalysts for methacrolein oxidation to methacrylic acid are developed on the basis of this correlation. These are the salts of PVMo-poly acid with Cs, Cu, and the transition metal M as cations. These catalysts are more active (a conversion of up to 91%) and selective (up to 98%) compared to conventional catalysts for methacrolein oxidation to methacrylic acid.  相似文献   

3.
固载化催化剂在烯烃氧化合成醛酮中的应用   总被引:2,自引:0,他引:2  
总结了固载化催化剂在烯烃氧化合成醛酮中的应用。着重介绍了钯配合物固载在无机载本上,钯盐和杂多化合物固载在无机载体上,钯盐固载在化催化剂在烯烃氧化合成醛酮中的应用。对负载型液相催化剂,负载型水相催化剂,负载型熔融盐Wacker催化剂,活性C固载的Pd膜及Pt膜催化剂催化烯烃氧化合成醛酮也作了简单介绍。  相似文献   

4.
The homogeneous catalytic oxidation of cyclohexane by molecular oxygen and hydrogen peroxide in a solution of acetic acid (HOAc) in the presence of cobalt(II) acetate Co(OAc)2 is studied. The high yields of cyclohexanol, cyclohexanone, and cyclohexyl hydroperoxide (0.10–0.15 mol/l) and the high rate of the process (w = 10–5–10–4 mol l–1 s–1) are explained by (1) mild conditions of oxidation in the medium of the HOAc solvent and (2) efficient initiation of the process due to the fast kinetics-controlled dissociation of H2O2 into radicals in the studied reaction medium under the action of cobalt cations. Quantitative relationships are found for the cyclohexane oxidation rate, the yield of target products, and the ratio of reactants participating in the process. The effect of hydrogen hydroperoxide additives on the concentrations of reduced and oxidized forms of the catalyst is studied by spectrophotometry in model mixtures. Quantum chemistry is employed to calculate the probabilities of some key elementary reactions. Calculated data agree well with the experiment.  相似文献   

5.
The literature data concerning features of the kinetics and mechanisms of elementary steps of liquid-phase oxidation of cyclohexane and its oxygen derivatives are considered and analyzed. A comparison of rates of intermolecular and intramolecular reactions of cyclohexylperoxyl radicals under the industrial conditions indicated a necessity to take into account intramolecular interactions. The occurrence of cross recombination of hydroperoxyl and α-hydroxyperoxyl radicals without chain termination in the course of cyclohexanol and 2-hydroxycyclohexanol oxidation was proved. A significance of degenerate branching reactions involving cyclohexyl hydroperoxide in the industrial process of cyclohexane oxidation at 423 K was evaluated. The influence of the electron-withdrawing functional groups on the reactivity of carbon–hydrogen bonds of organic compounds in the reactions with electrophilic peroxyl radicals was studied. The low conversion of a substrate in the industrial process are mainly caused by the radicalchain oxidation of cyclohexanone leading only to by-products. The catalysts of cyclohexane oxidation, viz., compounds of variable valence metals, affect the reaction rate and ratio of the yields of the target products (cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone) but exert no effect on their relative reactivity. The use of the catalytic additives increasing the yield of cyclohexanone in the step of cyclohexane oxidation in the production of caprolactam is revealed to be inexpedient.  相似文献   

6.
The liquid-phase oxidation of benzothiophene and dibenzothiophene by cumyl hydroperoxide in the presence of supported metal oxide catalysts was carried out in octane in an N2 atmosphere at 50–80°C. The cumyl hydroperoxide, benzothiophene, and dibenzothiophene conversions and the yield of sulfones were determined for catalysts of various natures. In the presence of MoO3/SiO2, the most efficient and most readily regenerable catalyst, the benzothiophene conversion was ~60% and the dibenzothiophene conversion was as high as 100% upon almost complete consumption of cumyl hydroperoxide. The influence of unsaturated and aromatic compounds (oct-1-ene, toluene) on the catalytic effect was studied. The kinetics of substrate oxidation and cumyl hydroperoxide decomposition and an analysis of the cumyl hydroperoxide conversion products suggested a benzothiophene and dibenzothiophene oxidation mechanism including the formation of an intermediate complex of the hydroperoxide with the catalyst and the substrate and its transformation via heterolytic and homolytic routes.  相似文献   

7.
The effects of free-radical reaction inhibitors (InH), hydroquinone (HQ) and quinone (Q), on the oxidation of cyclohexane catalyzed by cobalt(II) acetate Co(OAc)2 · 4H2O and on the decomposition of hydrogen peroxide in acetic acid (HOAc) at 303 K were studied. It was found that an increase in the concentration of HQ in the starting reaction mixture containing cyclohexane, the catalyst, and H2O2 dissolved in HOAc resulted in an exponential decrease in the yields of the target products of oxidation: cyclohexanol, cyclohexanone, and cyclohexyl hydroperoxide. In the presence of Q, the dependence of the yield of the target products on the initial inhibitor concentration exhibited a maximum at (1.8–2.5) × 10–2 M Q. At (2.2–2.4) × 10–2 M Q concentrations, the yield of the target products was 55–60% of that in an uninhibited process. Based on kinetic, spectrometric, and quantum-chemical data, the effect found was explained by the fact that under the experimental conditions highly active hydroxyl derivatives of radicals rather than a hydroxy quinolide hydroperoxide (the homolysis of which can produce species with a free valence, which are capable of initiating free-radical reactions) were largely formed from Q.  相似文献   

8.
Bismuth(III) salts are efficient catalysts for the selective allylic oxidation using tert-butyl hydroperoxide. BiCl3 is especially effective and can be easily recovered and reused as BiOCl. Using BiCl3/K-10 as catalyst, an increase in the reaction rate was observed.  相似文献   

9.
Iron oxide coated platinum nanowires (Pt@Fe(2)O(3)NWs) with a diameter of 2.8 nm have been prepared by the oxygen oxidation of FePt NWs in oleylamine. These "cable"-like NWs were characterised by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and X-ray absorption fine structure analysis. These Pt@Fe(2)O(3) NWs were used as "non-support" heterogeneous catalysts in oxidation of olefins and alcohols. The results revealed that it is an active and highly selective catalyst. Styrene derivatives were tested with molecular oxygen as the sole oxidant, with benzaldehyde successfully obtained from styrene in an absolute yield of 31%, whereas the use of tert-butyl hydroperoxide as the sole oxidant in the oxidation of alcohols led to yields of more than 80% of the corresponding ketone or aldehyde. This unsupported catalyst was found to be more active (TOF=96.5 h(-1)) than other reported Fe(2)O(3) nanoparticle catalysts and could be recycled multiple times without any notable decrease in activity. Our findings will extend the use of such nanomaterial catalysts to new catalytic systems.  相似文献   

10.
The efficiency of cyclohexane oxidation with hydrogen peroxide catalyzed by vanadyl acetylacetonate at 40 °C and atmospheric pressure is enhanced by glyoxal additive. The process selectively produces a mixture of cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone with a high rate (up to 4400 catalyst turnover number). Cobalt(II) acetylacetonate is much less active but more selective with respect to cyclohexyl hydroperoxide.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 307–310, February, 2005.  相似文献   

11.
The Co(II) salt (nitrate, chloride)-induced acceleration of styrene epoxide (SE) consumption and oxidation by molecular oxygen in acetonitrile solutions of three- and four-component systems, SE–acetic acid–cobalt salt and SE–acetic acid–cobalt salt–aniline, was found and investigated. The heterolytic epoxide ring opening in SE and homolysis (oxidation) catalyzed by cobalt salts can be accomplished in the presence of acid co-catalyst. The competition between homolysis and heterolysis processes in the presence of metal-containing catalyst was discovered for the first time for this type of system. The cobalt catalyst is deactivated during the styrene epoxide conversion.  相似文献   

12.
张宇  张佳慧  刘诗鑫  赵震 《化学通报》2023,86(7):833-843
挥发性有机化合物(VOCs)对环境的严重污染和对人体的危害引起了人们的重视。冷等离子体与催化剂耦合形成的协同效应可显著提高VOCs低温转化速率,减少二次污染和降低能耗,具有较好的应用前景。协同催化效果主要取决于催化剂物化性能,可通过调控催化剂的组成、粒径和结构改善协同催化活性。锰基氧化物因其具有较高的储氧能力、稳定的晶体结构、较好的氧气活化性能和良好的抗中毒能力等优点而被广泛应用于冷等离子体协同催化净化VOCs的应用研究。通过金属离子掺杂调控锰基氧化物的离子价态、氧迁移率和氧气吸附量,是改善催化剂与等离子体协同催化性能主要方法。本文总结了近年来锰基氧化物与冷等离子体协同催化氧化VOCs的研究进展,主要包括氧化锰晶型、分散度和掺杂金属离子对协同催化氧化VOCs的活性影响趋势及反应机理。分析冷等离子体与锰基氧化物催化剂协同氧化VOCs中存在的问题并对其发展前景进行了展望。  相似文献   

13.
Degradation of butadiene-styrene rubber production wastes, coagulums, using a catalytic system based on hydroperoxide, variable-valence metal salt, and alcohol was studied.  相似文献   

14.
Comparative study of two types of single-wall carbon nanotubes and standard carbon black Vulcan XC-72 as supports for catalysts of reactions proceeding in fuel cells is carried out. The nanotubes were prepared by arc method; they differed in the degree of their purifying from amorphous carbon and metal impurities. The structure and hydrophobic-hydrophilic properties of these carbon supports are studied by etalon porosimetry. The effect of the supports’ specific surface area on the deposited catalyst particles size and specific surface area is studied. The catalysts (Pt-Ru and Pt) were deposited from aqueous solutions of their salts. Platinum was also deposited by thermal decomposition of ethoxy clusters. It is shown that in methanol oxidation reaction at the Pt-Ru catalysts the current values per unit true surface area do not depend on the support nature, provided the catalyst loading is equal and the particle size is similar. When oxygen is reduced at platinum deposited onto purified nanotubes and the carbon black Vulcan XC-72, specific kinetic currents also are close to each other. It is shown that the degree of nanotubes purification and their structure affect the kinetics of this reaction significantly.  相似文献   

15.
The catalytic effect of VSi2 on initial stages of the liquid-phase oxidation of cyclooctene by molecular oxygen was studied. The vanadium disilicide influences on the oxidation process in the presence of hydroperoxide. VSi2 takes part in a radical formation stage by catalysis of hydroperoxide decomposition reaction. The catalyst was investigated before and after reaction using FTIR spectroscopy. From the data obtained, the kinetic model of the catalytic oxidation process was proposed and the equation for the reaction rate was derived. The equation has described all observed dependences of reaction rate on the concentration of reactants and content of catalyst.   相似文献   

16.
SBA-15-supported iron catalysts with and without alkali metal salt modifications were studied for propylene oxidation by nitrous oxide. The reaction route could be dramatically changed from allylic oxidation to epoxidation by modification of the FeOx/SBA-15 catalyst with alkali metal salts. The KCl-1 wt % FeOx/SBA-15 (K/Fe = 5) catalyst exhibited the best catalytic performances for propylene epoxidation, over which ca. 50% propylene oxide selectivity could be gained at a 10% propylene conversion at 648 K. Characterizations with diffuse reflectance UV-Vis, XANES, and Raman spectroscopic techniques revealed that the modification with KCl increased the dispersion of the iron species and changed the local coordination of iron into a tetrahedral configuration on the inner surface of SBA-15. This tetrahedrally coordinated iron site, which was probably stabilized by potassium ions, was proposed to account for the epoxidation of propylene by nitrous oxide. At the same time, the reactivity of lattice oxygen was inhibited, and the acidity of the FeOx/SBA-15 was eliminated. These changes should also contribute to the increase in the selectivity to propylene oxide. The counteranions in the alkali metal salts exerted a significant influence on the catalytic behaviors probably via an electronic effect.  相似文献   

17.
《中国化学快报》2020,31(5):1201-1206
The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest. Here, the role of active substrate in the performance and stability of Cu-Fe-Co ternary oxides was studied towards the complete catalytic oxidation of CO. The Cu-Fe-Co oxide thin films were deposited on copper grid mesh (CUGM) using one-step pulsed-spray evaporation chemical vapor deposition method. Crystalline structure and morphology analyses revealed nano-crystallite sizes and dome-top-like morphology. Synergistic effects between Cu, Fe and Co, which affect the surface Cu2+, Fe3+, Co3+ and chemisorbed oxygen species (O2− and OH) of thin films over the active support and thus result in better reducibility. The thin film catalysts supported on CUGM exhibited attractive catalytic activity compared to the ternary oxides supported on inert grid mesh at a high gas hourly space velocity. Moreover, the stability in time-on-stream of the ternary oxides on CUGM was evaluated in the CO oxidation for 30 h. The adopted deposition strategy of ternary oxides on CUGM presents an excessive amount of adsorbed active oxygen species that play an important role in the complete CO oxidation. The catalysts supported on CUGM showed better catalytic conversion than that on inert grid mesh and some literature-reported noble metal oxides as well as transition metal oxides counterparts, revealing the beneficial effect of the CUGM support in the improvement of the catalytic performance.  相似文献   

18.
The metal surfaces tend to be oxidized in air through dissociation of the O−O bond of oxygen to reduce the performances in various fields. Although several ligand modification routes have alleviated the oxidation of bulky metal surfaces, it is still a challenge for the oxidation resistance of small-size metal nanoparticles. Herein, we fixed the small-size Pd nanoparticles in tin-contained MFI zeolite crystals, where the tin acts as an electron donor to efficiently hinder the oxidation of Pd by weakening the adsorption of molecular oxygen and suppressing the O−O cleavage. This oxidation-resistant Pd catalyst exhibited superior performance in directly synthesizing hydrogen peroxide from hydrogen and oxygen, with the productivity of hydrogen peroxide at ≈10,170 mmol gPd−1 h−1, steadily outperforming the catalysts tested previously. This work leads to the hypothesis that tin is an electron donor to realize oxidation-resistant Pd within zeolite crystals for efficient catalysis to overcome the limitation of generally supported Pd catalysts and further motivates the use of oxidation-resistant metal nanoparticles in various fields.  相似文献   

19.
The oxidation of phenol and some chlorophenols by molecular oxygen at a concentration of 1.5x10-4 mol dm-3 has been studied in a small static titanium tubular reactor at temperatures of 648, 657, 673 K and a pressures of 22 MPa. The effect of transition metal salts (CuSO4, VSO4, FeSO4, MnSO4, NiSO4, CoSO4), added in small environmentally acceptable amounts as homogeneous catalysts, was also studied, with copper showing a good catalytic effect. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The low-temperature periodical activation of the catalysts based on the metal complexes of nitrogen-containing carbon is observed in the course of isopropylbenzene oxidation. The concentration of the surface hydroperoxide groups responsible for the chain process affects both catalyst deactivation and reactivation. Possible reactions responsible for the deactivation and periodical activation of the catalyst are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号