首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Polyelectrolytes with amphiphilic counterions, PEACs, are water insoluble because the amphiphiles self-assemble into highly charged micelles that strongly associate with the equally highly charged polyions. However, in the presence of water soluble cyclodextrins (CDs) that form inclusion complexes with the amphiphiles and prevent micellization, PEACs become soluble as the dispersed amphiphiles behave essentially as simple monovalent counterions. In this paper, we illustrate, by example, how strongly the ternary phase behavior of PEAC:CD:water depends on the polyion flexibility; for a highly flexible polyion (polyacrylate) the amphiphilic aggregates dictate the phase behavior, whereas a much stiffer polyion (DNA) itself dictates liquid crystalline ordering.  相似文献   

2.
Cyclodextrins (CDs) had been regarded as destructors in molecular assembly systems for a long time until CD/surfactants were found to assemble into high order structure driven by hydrogen bonding between CDs. Thereafter, intensive researches have been conducted on construction and regulation of CD–amphiphile systems. Here, we summarized the recent progress on construction and regulation of CDs and amphiphiles assembly. The scope of amphiphiles have been extended from surfactants (ionic surfactants, zwitterion surfactants, nonionic surfactants, gemini surfactant, and so on), to nontypical amphiphiles (amines, aromatic molecules, alkanes, and so on). Owing to the abundant choices of guest amphiphiles and dynamic nature of host–guest inclusive interaction, numerous regulation methods (such as enzyme, light, pH, concentration, temperature, and so on) have been used in CD–amphiphile systems. Moreover, remarks and future perspectives are also discussed at the end of this review, which is expected to stimulate progress on both mechanism and application level.  相似文献   

3.
The synthesis and aggregation behavior of cavity-containing facial amphiphiles is described. The molecules consist of a glycoluril-based rigid cavity functionalized with two water-soluble benzoate groups. By specific molecular recognition processes in water, the amphiphilic hosts self-assemble in a hierarchical process to form arrays of molecules. Depending on the counterions, these arrays can be assembled into well-defined aggregates of mesoscopic size. The size and shape of the aggregates can be tuned by variations in the size and substitution pattern of the cavities of the host molecules.  相似文献   

4.
CDs may have promising functions in surfactant systems far beyond simply being disadvantageous to the formation of micelles. In this paper we review the recent literature and our work on the interesting effect of CDs on amphiphilic systems, especially on the concentrated single surfactant systems and catanionic surfactant mixed systems, both of them have been scarcely focused upon in the literature. In concentrated single surfactant systems, the 2:1 surfactant-CD inclusion complexes may form hierarchical self-assemblies such as lamellae, microtubes, and vesicles which are driven by hydrogen bonding. In nonstoichiometrically mixed catanionic surfactant systems, CDs behave as a stoichiometry booster that always selectively binds to the excess component so as to shift the mixing ratio to electro-neutral in the aggregates. In this way, CDs reduce the electrorepulsion in the aggregates and trigger their growth. Upon analysis of literature work and our own results, we expect that a new era focusing on the new function of CDs on surfactant systems will come.  相似文献   

5.
A series of fully rigid rod–rod type amphiphilic molecules have been constructed by using 4,4′-bipyridin-1-ium or 4,4′-bipyridin-1,1′-diium (viologen) as a hydrophilic segment and phenyl, biphenyl or para-tert-phenyl as a hydrophobic unit. The crystal structures of four of the molecules have been elucidated. TEM, SEM, AFM, and DLS experiments revealed that these stiff amphiphiles could self-assemble into diverse architectures, including spherical micelles, ultra-long straight nanofibers (>1 mm), and nanotubes in water, which depend on the hydrophilic/hydrophobic fraction ratios of the molecules.  相似文献   

6.
The production of high-performance ceramics requires the protection of powder particles against chemical reactions. Hydrolysis and oxidation of nanoscaled non-oxidic powders can be impeded by a coating consisting of a dense adsorbed layer of amphiphilic molecules. Using Monte Carlo simulations for a coarse grained model the adsorption equilibrium of differently shaped amphiphiles in apolar and polar solvents is investigated. For estimating the protection capability of the adsorbed surfactant film in aqueous environment we study the diffusion of small hydrophilic particles through the adsorbed surfactant film. The surfactants considered as coating agents differ in the number of hydrocarbon tails. It is found that amphiphiles with a single hydrocarbon tail or at most two branches are more suitable to protect particle surfaces than amphiphiles with three or four branches, although the adsorption energy of amphiphiles with many branches is higher.  相似文献   

7.
I Markovich  D Mandler 《The Analyst》2001,126(11):1850-1856
A new approach for designing a voltammetric selective electrode is presented. The approach is based on the formation of a disorganised inert self-assembled monolayer (SAM), in which an amphiphilic molecule is incorporated. The latter serves as the selectivity factor, which extracts the analyte. The purpose of these experiments is to study the parameters that affect the capability of a monolayer to host amphiphiles. As model systems we focused on the incorporation of simple amphiphilic molecules (quaternary alkyl ammonium salts), electroactive amphiphiles (dialkylviologens) and a macrocycle ligand (tetramethylcyclam) into octadecyl silane monolayers formed on indium tin oxide (ITO) and purposely made disorganised alkanethiols on gold. We find that basically, the incorporation of amphiphiles into a hydrophobic inert SAM resembles a reversed stationary phase in liquid chromatography and this configuration can be used for designing selective electrodes.  相似文献   

8.
A series of oxidized di(indolyl)arylmethanes (DIAM) with polyaromatic signaling moieties have been designed for monitoring local pH at the interfacial region of surfactant aggregates, such as micelles and vesicles. The oxidized DIAMs show changes in solution color from red to yellow when incorporated in cationic surfactants (at pH 7.4) and yellow to reddish pink when exposed to negatively-charged surfactants (at pH 5.0). The changes in surface charge can influence the interfacial pH (distinct from bulk pH of the medium) of the surfactant aggregates. The mechanistic studies indicate that the red-shifted absorption maxima observed in the presence of anionic amphiphiles (acidic local pH) originated from the protonated species. On the contrary, maxima in the blue region, triggered by positively charged amphiphiles (basic local pH), is attributed to the zwitterionic species. Such prototropic equilibrium affects charge transfer states of the molecules along with their self-assembly properties. Thus, it is evident that probes can predict as well as quantify the local pH change using the pseudophase ion exchange formalism. Also, the probes can detect the presence of anionic amphiphiles even when bound to phospholipid membranes.  相似文献   

9.
Analogous to the self-assembly of low-molecular-weight amphiphiles in aqueous solutions, the formation of spherical micelle-like aggregates has been observed in systems of amphiphilic block copolymers in water. The aggregates, often called micelles due to structural similarities with surfactant associates, are found to exist above the critical micelle concentration (cmc). The micellization of amphiphilic block copolymers has been investigated using a wide range of techniques, such as size-exclusion chromatography (SEC), static and dynamic light scattering (SLS and DLS), small-angle x-ray scattering (SAXS), small-angle neutron scattering (SANS), transmission electron microscopy (TEM), viscometry, and steady-state fluorescence spectroscopy. The present lecture is a review of recent work in our laboratory concerning the micellization of ionic block copolymers. These high-molecular-weight amphiphiles may contain one or more of a variety of ionic blocks, such as poly(4-vinylpyridinium alkyl halides), poly(metal acrylates), poly(metal methacrylates) and sulfonated polystyrene. In water, such polymers are referred to as block polyelectrolytes, as they combine the colloidal behavior of block copolymers with the long-range electrostatic interactions of polyelectrolytes. Early work in this field has been reviewed by Selb and Gallot.1  相似文献   

10.
The aggregates of three new isomeric chiral bola-amphiphiles have been taken into consideration as models for investigating chiral recognition in biological membranes. The recognition capabilities of the aggregates were explored following (by CD and HPLC experiments) the shift in the equilibrium between the inter-converting enantiomers of a biphenylic derivative and bilirubin, used as markers of chirality. The chiral recognition experiments were performed under different pH and concentration conditions. The results were compared with those relative to the aggregates formed by an equimolar mixture of single head/single chain amphiphiles that mimic the structure of the bola surfactant devoid of a covalent link.  相似文献   

11.
New Monte Carlo simulations are presented for nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent specifically investigating the roles of tail attraction and binary mixtures of different tail lengths. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate thermodynamic adsorption and surface-tension isotherms and compare results quantitatively to single-surfactant adsorption (Langmuir, 2007, 23, 1835). Surfactant tail groups with attractive interaction lead to cooperative adsorption at high surface coverage and higher maximum adsorption at the interface than those without. Moreover, adsorption and surface-tension isotherms with and without tail attraction are identical at low concentrations, deviating only near maximum coverage. Simulated binary mixtures of surfactants with differing lengths give intermediate behavior between that of the corresponding single-surfactant adsorption and surface-tension isotherms both with and without tail attraction. We successfully predict simulated mixture results with the thermodynamically consistent ideal adsorbed solution (IAS) theory for binary mixtures of unequal-sized surfactants using only the simulations from the single surfactants. Ultimately, we establish that a coarse-grained LJ surfactant system is useful for understanding actual surfactant systems when tail attraction is important and for unequal-sized mixtures of amphiphiles.  相似文献   

12.
Monte Carlo simulations provide some insight into the self-assembly of amphiphiles in aqueous environment. A rather simple solvent-free model, with only two adjustable parameters in the effective pair potential, allows one to describe the formation of micelles, stable curved membranes, and metastable vesicles. Characteristic features of the self-assembled aggregates, such as the distribution of the micelle size and the value of the curvature elastic constant for membranes, can be obtained from simulated data. The capability of the simple approach was demonstrated for a surfactant model with three spherical segments. The extension of the simulation to molecules with more segments and branched amphiphiles is straightforward.  相似文献   

13.
Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorum was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly, from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses.  相似文献   

14.
A collection of homologous monodisperse facial amphiphiles consisting of an α-, β- or γ-cyclodextrin (α, β or γCD) platform exposing a multivalent display of cationic groups at the primary rim and bearing hexanoyl chains at the secondary hydroxyls have been prepared to assess the influence of the cyclooligosaccharide core size in their ability to complex, compact and protect pDNA and in the efficiency of the resulting nanocondensates (CDplexes) to deliver DNA into cells and promote transfection in the presence of serum. All the polycationic amphiphilic CDs (paCDs) were able to self-assemble in the presence of the plasmid and produce transfectious nanoparticles at nitrogen/phosphorous ratios ≥5. CDplexes obtained from βCD derivatives generally exhibited higher transfection capabilities, which can be ascribed to their ability to form inclusion complexes with cholesterol, thereby enhancing biological membrane permeability. The presence of thiourea moieties as well as increasing the number of primary amino groups then favour cooperative complexation of the polyphosphate chain, enhancing the stability of the complex and improving transfection. In the α and γCD series, however, only the presence of tertiary amino groups in the cationic clusters translates into a significant improvement of the transfection efficiency, probably by activating endosome escape by the proton sponge mechanism. This set of results illustrates the potential of this strategy for the rational design and optimisation of nonviral gene vectors.  相似文献   

15.
The interaction of cetyltrimethylammonium and cetylpyridinium bromides with picrate ions in water and aqueous solutions of the nonionic surfactant Brij 35 is studied by spectrophotometry. Spectral characteristics of the associates of picrate ions with long-chain nitrogen-containing cations depend on the concentration of a cationic surfactant. When β-cyclodextrin is added, these associates decompose owing to the formation of the strong inclusion complexes of the guest-host type with amphiphilic ions of a cationic surfactant or Brij 35 molecules. The conclusion is made that the driving force for the formation of premicellar aggregates involving picrate ions is the interactions between alkyl chains of surfactant cations. It is shown that, in the presence of various surfactants, as β-cyclodextrin concentration increases, first the molecules of nonionic surfactant and then amphiphilic cations bind with the receptor cavity. It is confirmed that there is no interaction between polyethylene glycol and β-cyclodextrin in aqueous solution.  相似文献   

16.
As a novel family of macrocyclic molecules,cucurbit[n]urils(CB[n]s) have emerged as promising building blocks of supramolecular nano drug delivery systems(SNDDS) in recent years.Direct encapsulation of amphiphilic guests by CB[6] and CB[7] can modulate their amphiphilicity,resulting in formation of supramolecular amphiphiles that self-assemble into supramolecular nanoparticles for drug delivery.Additionally,CB[n]'s host-guest chemistry on the surface of mesoporous nanoparticles makes CB[n] an ideal blocking agent to control drug release from delivery vehicles.These SNDDS possess intrinsic stimuli responsiveness towards external guest or host,which can further incorporate re s ponsiveness to a variety of other stimuli including pH,thermal,redox,photo and enzyme,to realize multiple stimuli-responsive drug release.Moreover,the recent breakthrough in direct functionalization of CB[n]s has provided a feasible method for preparing superior CB[6] and CB[7] derivatives that can be employed to build multifunctional SNDDS with unoccupied macrocycles located on surface,which could be decorated with various functional "tags" through host-guest chemistry.In this review,we summarized the recent progress of CB[6] and CB[7] based SNDDS through formation of supramolecular amphiphiles,supramolecular nanovalves as well as supramolecularly tailorable surface,which we hope to further promote the development of CB[n]s family as building blocks for advanced SNDDS.  相似文献   

17.
Heteracalixaromatics are an emerging generation of macrocyclic host molecules in supramolecular chemistry. As a typical example of heteracalixaromatics, oxacalix[2]arene[2]triazine adopts a shape-persistent 1,3-alternate conformation and can be easily functionalized. Taking it as a platform, a series of oxacalix[2]arene[2]triazine-based amphiphiles bearing long alkyl chains were synthesized through post-macrocyclization functionalization or 3+1 fragment coupling protocols. The self-assembly behavior of these amphiphiles in a mixture of tetrahydrofuran (THF) and water was investigated. Dynamic light scattering (DLS) measurements revealed that the size of the self-assembled aggregates is dependent on the structure of the amphiphiles. The long alkyl chain substituents and/or intermolecular hydrogen bonds were found to promote the self-assembly.  相似文献   

18.
Self-assembled aggregates of amphiphilic surfactant molecules formed on solid surfaces are similar to biological membranes. To understand the formation mechanism of these aggregates, we have studied the formation of self-organized monolayers from low-concentration sodium dodecyl sulfate (SDS) aqueous solutions (concentration below the critical micelle concentration) on gold surfaces. The study has been carried out by using simultaneously quartz crystal microbalance (QCM) and open circuit potential measurements in situ. We have developed a model which explains the variation of the QCM frequency and open circuit potential following SDS additions to water. The dominant growth mechanism during the major part of film formation was demonstrated to be surface diffusion of surfactant molecules.  相似文献   

19.
By means of the electrospinning technique we have successfully synthesized cyclodextrin (CD) functionalized polyethylene oxide (PEO) nanofibers (PEO/CD) with the ultimate goal to develop functional nanowebs. Three different types of CDs; α-CD, β-CD and γ-CD are incorporated individually in electrospun PEO nanofibers. The aqueous solutions containing different amount of PEO (3%, 3.5% and 4% (w/v), with respect to solvent) and CDs (25% and 50% (w/w), with respect to PEO) are electrospun and bead-free nanofibers are obtained. The presence of the CDs in the PEO solutions is found to facilitate the electrospinning of bead-free nanofibers from the lower polymer concentrations and this behavior is attributed to the high conductivity and viscosity of the PEO/CD solutions. The presence of CDs in the electrospun PEO nanofibers is confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The 2-D X-ray diffraction (XRD) spectra of PEO/CD nanowebs did not show any significant diffraction peaks for CDs indicating that the CD molecules are distributed within the polymer matrix without any phase separated crystalline aggregates.  相似文献   

20.
Distinct changes in the lyotropic mesophase behaviour of nonionic polyethyleneglycol containing amphiphiles are observed, when rigid, rod-like molecular units are introduced into the hydrophobic part of these amphiphiles, or when the amphiphiles are added as side chains to poly(methylhydrogene siloxane), yielding amphiphilic side chain polymers. Low molar mass amphiphiles with a dominating rigid, rod-like hydrophobic unit form planar-like micelles which aggregate into lamellar mesophases. Compared with their corresponding low molar mass amphiphiles, amphiphilic side chain polymers show a distinct stabilization of mesophases composed of anisometric micelles, i.e. hexagonal H1-phases (built up by rod shaped micelles), and lamellar L -phases (built up by planarshaped micelles). In addition, several of the polymeric amphiphiles exhibit the formation of a lyotropic nematic Nc-phase regime. Optically isotropic I1-phases composed of approximately spherical-like micelles are, on the other hand, disfavoured by the polymerfixation. Investigations of monodisperse amphiphilic side chain oligomers reveal a linear relationship between the thermal stability of the individual mesophases and the logarithm of the degree of polymerization. Changes in mesophase behaviour, due to the introduction of rigid, rod-like molecular units into the hydrophobic part of the low molar mass amphiphiles, are ascribed to packing restraints of the amphiphiles in the micelles. Alterations in mesophase behaviour which occur as a consequence of polymerfixation are discussed in terms of changes in micellar kinetics, packing restraints, and changes in the interaction between adjacent hydrophobic layers of neighbouring micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号