首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper aims at the global regularity of classical solutions to the 2D Boussinesq equations with vertical dissipation and vertical thermal diffusion. We prove that the Lr-norm of the vertical velocity v for any 1<r<∞ is globally bounded and that the L-norm of v controls any possible breakdown of classical solutions. In addition, we show that an extra thermal diffusion given by the fractional Laplace δ(−Δ) for δ>0 would guarantee the global regularity of classical solutions.  相似文献   

2.
This paper studies the global existence and regularity of classical solutions to the 2D incompressible magneto-micropolar equations with partial dissipation. The magneto-micropolar equations model the motion of electrically conducting micropolar fluids in the presence of a magnetic field. When there is only partial dissipation, the global regularity problem can be quite difficult. We are able to single out three special partial dissipation cases and establish the global regularity for each case. As special consequences, the 2D Navier-Stokes equations, the 2D magnetohydrodynamic equations, and the 2D micropolar equations with several types of partial dissipation always possess global classical solutions. The proofs of our main results rely on anisotropic Sobolev type inequalities and suitable combination and cancellation of terms.  相似文献   

3.
We construct a family of finite energy classical solutions to the 3D MHD system with both Laplacian dissipation and magnetic diffusion. We choose the steady state Beltrami flows as the initial data and use a cut-off technique to obtain the global regularity for all time t.  相似文献   

4.
This paper concerns the conditional global regularity of incompressible MHD equations with horizontal dissipation and horizontal magnetic diffusion in two dimension. When only horizontal dissipation and horizontal magnetic diffusion are present, there is no control on the vertical derivatives of velocity field and magnetic field, which is the main difficulty to establish the global regularity. In this paper, we establish a global regularity criterion in terms of one entry of the velocity gradient tensor or one entry of the magnetic field gradient tensor, which extends the recent work (Fan and Ozawa, 2014).  相似文献   

5.
The incompressible Boussinesq equations not only have many applications in modeling fluids and geophysical fluids but also are mathematically important. The well-posedness and related problem on the Boussinesq equations have recently attracted considerable interest. This paper examines the global regularity issue on the 2D Boussinesq equations with fractional Laplacian dissipation and thermal diffusion. Attention is focused on the case when the thermal diffusion dominates. We establish the global well-posedness for the 2D Boussinesq equations with a new range of fractional powers of the Laplacian.  相似文献   

6.
In this paper,we consider regularity criteria for solutions to the 3D MHD equations with incompressible conditions.By using some classical inequalities,we obtain the regularity of strong solutions to the three-dimensional MHD equations under certain sufficient conditions in terms of one component of the velocity field and the magnetic field respectively.  相似文献   

7.
The non blow-up of the 3D ideal incompressible magnetohydrodynamics (MHD) equations is proved for a class of three-dimensional initial data characterized by uniformly large vorticity and magnetic field in bounded cylindrical domains. There are no conditional assumptions on properties of solutions at later times, nor are the global solutions close to some 2D manifold. The approach of proving regularity is based on investigation of fast, singular, oscillating limits and nonlinear averaging methods in the context of almost periodic functions. We establish the global regularity of the 3D limit resonant MHD equations without any restrictions on the size of the 3D initial data. After establishing the strong convergence to the limit resonant equations, we bootstrap this into the regularity on arbitrarily large time intervals for solutions of the 3D MHD equations with weakly-aligned uniformly large vorticity and magnetic field at t = 0. Bibliography: 36 titles. Dedicated to the memory of O. A. Ladyzhenskaya Published in Zapiski Nauchnykh Seminarov POMI, Vol. 318, 2004, pp. 203–219.  相似文献   

8.
This paper is devoted to the global in time existence of classical solutions to the d-Dimensional (dD) micropolar equations with fractional dissipation. Micropolar equations model a class of fluids with nonsymmetric stress tensor such as fluids consisting of particles suspended in a viscous medium. It remains unknown whether or not smooth solutions of the classical 3D micropolar equations can develop finite-time singularities. The purpose here is to explore the global regularity of solutions for dD micropolar equations under the smallest amount of dissipation. We establish the global regularity for two important fractional dissipation cases. Direct energy estimates are not sufficient to obtain the desired global a priori bounds in each case. To overcome the difficulties, we employ the Besov space techniques.  相似文献   

9.
We study the global existence and regularity of classical solutions to the 2D incompressible magneto‐micropolar equations with partial dissipation. We establish the global regularity for one partial dissipation case. The proofs of our main results rely on anisotropic Sobolev type inequalities and suitable combination and cancellation of terms.  相似文献   

10.
We obtain new continuation principle of the local classical solutions of the 3D Euler equations, where the regularity condition of the direction field of the vorticiy and the integrability condition of the magnitude of the vorticity are incorporated simultaneously. The regularity of the vorticity direction field is most appropriately measured by the Triebel-Lizorkin type of norm. Similar result is also obtained for the inviscid 2D quasi-geostrophic equation.  相似文献   

11.
This paper furthers the study of Adhikari et al. (2010) [2] on the global regularity issue concerning the 2D Boussinesq equations with vertical dissipation and vertical thermal diffusion. It is shown here that the vertical velocity v of any classical solution in the Lebesgue space Lq with 2?q<∞ is bounded by C1q for C1 independent of q. This bound significantly improves the previous exponential bound. In addition, we prove that, if v satisfies , then the associated solution of the 2D Boussinesq equations preserve its smoothness on [0,T]. In particular, implies global regularity.  相似文献   

12.
In this paper, we prove the global in time regularity for the 2D Boussinesq system with either the zero diffusivity or the zero viscosity. We also prove that as diffusivity (viscosity) tends to zero, the solutions of the fully viscous equations converge strongly to those of zero diffusion (viscosity) equations. Our result for the zero diffusion system, in particular, solves the Problem no. 3 posed by Moffatt in [R.L. Ricca, (Ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, pp. 3-10].  相似文献   

13.
In this paper, we establish the global regularity of classical solutions for the two-dimensional MHD equations with only velocity diffusion for a class of large initial data. Both the initial velocity and magnetic field can be arbitrarily large in Hs.  相似文献   

14.
In this paper we establish the existence and uniqueness of solutions for nonlinear evolution equations on a Banach space with locally monotone operators, which is a generalization of the classical result for monotone operators. In particular, we show that local monotonicity implies pseudo-monotonicity. The main results are applied to PDE of various types such as porous medium equations, reaction–diffusion equations, the generalized Burgers equation, the Navier–Stokes equation, the 3D Leray-α model and the p-Laplace equation with non-monotone perturbations.  相似文献   

15.
张明玉 《数学学报》2021,64(1):107-122
探究了具有部分耗散和磁扩散的二维不可压缩磁流体(MHD)方程的初边值问题.在有界区域上,当系统的各个方向上的耗散系数和磁扩散系数都非负时,我们得到了该模型的强解是整体存在且唯一的.此外,对周期域而言,其解仍是全局适定的.  相似文献   

16.
This paper is dedicated to establishing the global regularity for the two dimensional magnetohydrodynamic equations with fractional anisotropic dissipation when the fractional powers are restricted to some certain ranges. In addition, the global regularity results for the two dimensional magnetohydrodynamic equations with partial dissipation are also obtained. Consequently, these results bring us more closer to the resolution of the global regularity problem on the two dimensional magnetohydrodynamic equations with standard Laplacian magnetic diffusion.  相似文献   

17.
This work establishes two regularity criteria for the 3D incompressible MHD equations. The first one is in terms of the derivative of the velocity field in one direction while the second one requires suitable boundedness of the derivative of the pressure in one direction.  相似文献   

18.
We prove regularity criteria for the 3D generalized MHD equations. These criteria impose assumptions on the vorticity only. In addition, we also prove a result of global existence for smooth solution under some special conditions.  相似文献   

19.
The Cauchy problem for singularly perturbed parabolic equations is considered, and weighted L2-estimates as well as certain decay properties of bounded classical solutions to it are established. These do not depend on the value of the small perturbation parameter, and allow to prove global in time existence of strong solutions to certain boundary-value problems for ultraparabolic equations with unbounded coefficients. Optimal decay estimates are proved for such solutions. All results concerning ultraparabolic equations apply, in particular, to the Kolmogorov equation for diffusion with inertia, to the (linear) Fokker-Planck equation, to the linearized Boltzmann equation, and to some nonlinear integro-differential ultraparabolic equations of the Fokker-Planck type, arising from biophysics. Optimal decay estimates are derived for global in time strong solutions to such equations.  相似文献   

20.
We study the dynamics along the particle trajectories for the 3D axisymmetric Euler equations. In particular, by rewriting the system of equations we find that there exists a complex Riccati type of structure in the system on the whole of R3, which generalizes substantially the previous results in [5] (D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations, Nonlinearity 21 (2008) 2053-2060). Using this structure of equations, we deduce the new blow-up criterion that the radial increment of pressure is not consistent with the global regularity of classical solution. We also derive a much more refined version of the Lagrangian dynamics than that of [6] (D. Chae, On the Lagrangian dynamics for the 3D incompressible Euler equations, Comm. Math. Phys. 269 (2) (2007) 557-569) in the case of axisymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号