首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.  相似文献   

2.
Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 1, it is proved that the dressed quark propagator at finite chemical potential μ can be written as G0^-1 [μ] =iγ·p↑-A(p↑-^2) +B(p↑-^2) with p↑-μ= (p↑-p4 +iμ). From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.  相似文献   

3.
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p^2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.  相似文献   

4.
According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark propagator is suggested in this paper. The parametrized quark propagator describes a confined quark propagation in hadron, and is analytic everywhere in complex p2-plane and has no Lehmann representation. The vector and scalar self-energy functions [1 - Af(p2)] and [Bf(p2) - mf], dynamically running effective mass of quark Mf(p2) and the structure of non-local quark vacuum condensates as well as local quark vacuum condensates are predicted by use of the parametrized quark propagator. The results are compatible with other theoretical calculations.  相似文献   

5.
In consideration of the lowest dimensional condensate contributions to the free quark propagator, we obtain the nonperturbative quark propagator with the nonvanishing vacuum average value for quark composite operator (|qq|), Using the -corrected quark propagator and basing on the simple quark-parton model, we discuss the nonperturbative effect in the nucleon structure function. It is shown that the nonperturbative effect modifies the conventional quark-parton model formula of the nucleon structure function at finite Q2 and suggests a nontrivial Q2-dependence in the Gottfried sum.  相似文献   

6.
In quantum chromodynamics (QCD), the scalar susceptibility represents the modification of the quark condensate, to a small perturbation of the parameter responsible for the explicit breaking of the symmetry, i.e., the current quark mass. By studying the linear response of the dressed quark propagator to the presence of a nonzero quark mass, we derive a model-independent formula for the scalar susceptibility, which contains the dressed quark propagator G(p) and the dressed scalar vertex F(p, 0). The numerical values of the scalar susceptibility Xs are calculated within the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach by employing two typical forms of model gluon propagator.  相似文献   

7.
In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.  相似文献   

8.
In this paper, we give a direct method for calculating the partition function, and hence the equation of state (EOS) of QCD at finite chemical potential and zero temperature. In the EOS derived in this paper the pressure density is the sum of two terms: the first term P(μ)|μ=0 (the pressure density at μ = 0) is a μ-independent constant; the second term, which is totally determined by G[μ] (p) (the dressed quark propagator at finite μ), contains all the nontrivial μ-dependence. By applying a general result in the rainbow-ladder approximation of the Dyson-Schwinger approach obtained in our previous study [Phys. Rev. C 71 (2005) 015205], G[μ](p) is calculated from the meromorphic quark propagator proposed in [Phys. Rev. D 67 (2003) 054019]. From this the full analytic expression of the EOS of QCD at finite μ and zero T is obtained (apart from the constant term P(μ)|μ=0, which can in principle be caJculated from the CJT effective action). A comparison between our EOS and the cold, perturbative EOS of QCD of Fraga, Pisarski and Schaffner-Bielich is made. It is expected that our EOS can provide a possible new approach for the study of neutron stars.  相似文献   

9.
基于Dyson-Schwinger方程(DSEs)所确定的夸克传播子和算符成积展开(OPE),在彩虹近似下,预言了QCD真空中非定域夸克真空凝聚的结构。这种结构由夸克自能函数Af和Bf决定,通过数值求解DSEs就可以得到这些自能函数。但是,直接数值求解DSEs方程非常复杂,这里采用Roberts和Williams提出的参数化方法,用参数化的夸克传播函数σf v(p2)和σf s(p2)计算夸克自能函数。同时,也计算了定域的夸克真空凝聚值,夸克胶子混合的真空凝聚值,以及夸克的虚度。理论预言和计算结果均与标准QCD求和定则、格点QCD和瞬子模型的理论结果大致相符。和这些模型的结果相比,参数化方法得到的轻夸克(u,d,s)的定域真空凝聚偏大,这主要是由于模型依赖导致的。与u,d夸克相比,s夸克的真空凝聚比较大,这是因为s夸克自身质量较大的缘故。当然,Roberts-Williams参数化的夸克传播子只是一个经验公式,只能近似描述夸克的传播。  相似文献   

10.
Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the “rainbow”approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions A/(p2), Bl(p2) and effective mass M$(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.  相似文献   

11.
研究夸克的质量是QCD研究中的一个非常重要问题。因为, 夸克质量是标准模型的基本输入参数, 准确地确定这些参数无论对于唯象的应用还是对于理论的应用都是极其重要的。基于参数化的完全穿衣服的夸克传播子, 研究了自能函数和夸克的动力学质量。理论预言了夸克质量和自能函数, 其结果与文献中的经验值相符合, 也与Dyson Schwinger方程解一致。反过来这也说明了参数化的夸克传播子是成功和可靠的。Study of mass of quark is one of the most important issues in the investigation of QCD. Because masses of quarks are fundamental QCD input parameters of standard Model, and an accurate determination of these parameters is extremely important for both phenomenological and theoretical applications. Based on the parameterized fully dressed quark propagator proposed by us, the theoretical predictions of the masses of quarks are predicted in this short note. The effective quark mass is defined by the scalar self energy function Bf(p2) and vector self energy function Af(p2). The results of our calculations are in agreement with the empirical values used widely in literature and also show that the parameterized form of quark propagator is an applicable and reliable approximation.  相似文献   

12.
Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass ms to up or down quark mass mu,d. The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χ PT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.  相似文献   

13.
We report on an analysis of the quark spectral representation at finite temperatures based on the quark propagator determined from its Dyson–Schwinger equation in Landau gauge. In Euclidean space we achieve nice agreement with recent results from quenched lattice QCD. We find different analytical properties of the quark propagator below and above the deconfinement transition. Using a variety of ansätze for the spectral function we then analyze the possible quasiparticle spectrum, in particular its quark mass and momentum dependence in the high temperature phase. This analysis is completed by an application of the Maximum Entropy Method, in principle allowing for any positive semi-definite spectral function. Our results motivate a more direct determination of the spectral function in the framework of Dyson–Schwinger equations.  相似文献   

14.
By differentiating the inverse dressed quark propagator at finite chemical potential μ with respect to μ, the linear response of the dressed quark propagato r to the chemical potential can be obtained, From this we extract a modelindependent formula for the linear chemical potential dependence of the in-medium two-quark condensate and show by two independent methods (explicit calculation and Lorentz covariance arguments) that the first-order contribution in μ to the in-medium two-quark condensate vanishes identically. Therefore if one wants to study the in-medium two-quark condensate one should expand to at/east the second order in the chemical potential μ.  相似文献   

15.
We study a gauge-invariant order parameter for deconfinement and the chiral condensate in SU(2) and SU(3) Yang–Mills theory in the vicinity of the deconfinement phase transition using the Landau gauge quark and gluon propagators. We determine the gluon propagator from lattice calculations and the quark propagator from its Dyson–Schwinger equation, using the gluon propagator as input. The critical temperature and a deconfinement order parameter are extracted from the gluon propagator and from the dependency of the quark propagator on the temporal boundary conditions. The chiral transition is determined using the quark condensate as order parameter. We investigate whether and how a difference in the chiral and deconfinement transition between SU(2) and SU(3) is manifest.  相似文献   

16.
Phenomenological consequences of the infrared singular, instantaneous part of the gluon propagator in the Coulomb gauge are investigated. The corresponding quark Dyson-Schwinger equation is solved, neglecting retardation and transverse gluons and regulating the resulting infrared singularities. While the quark propagator vanishes as the infrared regulator goes to zero, the frequency integral over the quark propagator stays finite and well defined. Solutions of the homogeneous Bethe-Salpeter equation for the pseudoscalar and vector mesons as well as for scalar and axial-vector diquarks are obtained. In the limit of a vanishing infrared regulator the diquark masses diverge, while meson properties and diquark radii remain finite and well defined. These features are interpreted with respect to the resulting aspects of confinement for colored quark-quark correlations.  相似文献   

17.
We propose a new method for calculating the dressed fermion propagator at finite chemical potential in QED3 under the rainbow approximation of Dyson-Schwinger equation. In the above approximation, we show that the dressed fermion propagator at finite chemical potential # has the form S(p) = iγ.p^-A(p^-2) + B( p^-2) with p^-μ= (p^-1p3 + iμ). Using this form of fermion propagator at nonzero chemical potential, we investigate the Dyson-Schwinger equation for the dressed fermion propagator at finite chemical potential and study the effects of the chemical potential on the critical number of the fermion flavors.  相似文献   

18.
Based on the self-consistent scheme beyond the mean-field approximation in the large Nc expansion, including current quark mass explicitly, a general scheme of SU(2) NJL model is developed. To ensure the quark self-energy expanded in the proper order of Nc,an approximate internal meson propagator is deduced, which is in order of O(l/Nc). In our scheme, adopting the method of external momentum expansion, all the Feynman diagrams are calculated in a unified way by only expanding the quark propagator. Our numerical results show that, different &om the mean-field approximation in which the explicitly chiral symmetry breaking is invisible, the effect of finite pion mass can be seen clearly when beyond the meanfield approximation.  相似文献   

19.
Based on the Dyson-Schwinger equations of QCD in the "rainbow" approximation, the fully dressed quarkpropagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solutionof the equations. The dressed quark amplitudes Af and Bf built up the fully dressed quark propagator and the dynamicalrunning masses Mf defined by Af and Bf for light quarks u, d and s are calculated, respectively. Using the predictedrunning masses Mf, quark condensates <0|q(0)q(0)|0> = -(0.255 GeV)a for u, d quarks, and <0|s s|0> = 0.8<0|q(0)q(0)]0)for s quark, and experimental pion decay constant fπ = 0.093 GeV, the masses of Goldstone bosons K, π, and η are alsoevaluated. The numerical results show that the masses of quarks are dependent on their momentum p2. The fully dressedquark amplitudes Af and Bf have correct behaviors which can be used for many purposes in our future researches onnonperturbative QCD.  相似文献   

20.
基于参数化的完全穿衣服的夸克传播子, 利用量子色动力学(QCD)研究了核子的磁矩和电荷半径平方的平均值与夸克动量的依赖关系。预言的核子磁矩和电荷半径的数值与文献中广泛应用的经验值和其他许多具有QCD特征的理论模型所预言的值一致。结果说明了核子的磁矩和电荷半径不是人们通常所理解的一个不变的常数, 而是依赖于核子中夸克动量的一个跑动量, 对于不同动量它们的值是不同的。计算结果也清楚地表明了所采用的参数化的夸克传播子的适用性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号