首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 A rapid flow-injection method with chemiluminescence (CL) detection is described for the determination of glutathione (GSH). The method is based on the CL reaction of luminol and hydrogen peroxide. GSH can greatly enhance the chemiluminescence intensity in 0.1 mol/L borax–sodium hydroxide buffer solution (pH = 9.7). The maximum CL intensity was directly proportional to the concentration of GSH in the range 3.0 × 10−7–2.0 × 10−5 mol/L, and the detection limit was 6.8 × 10−8 mol/L. The relative standard deviation was 3.4% for 5.0 × 10−6 mol/L of GSH (n = 11). Received October 23, 2001; accepted June 18, 2002  相似文献   

2.
In the presence of carbonate and uranine, the chemiluminescent intensity from the reaction of luminol with hydrogen peroxide was dramatically enhanced in a basic medium. Based on this fact and coupled with the technique of flow-injection analysis, a highly sensitive method was developed for the determination of carbonate with a wide linear range. The method provided the determination of carbonate with a wide linear range of 1.0 × 10−10–5.0 × 10−6 mol L−1 and a low detection limit (S/N = 3) of carbonate of 1.2 × 10−11 mol L−1. The average relative standard deviation for 1.0 × 10−9–9.0 × 10−7 mol L−1 of carbonate was 3.7% (n = 11). Combined with the wet oxidation of potassium persulfate, the method was applied to the simultaneous determination of total inorganic carbon (TIC) and total organic carbon (TOC) in water. The linear ranges for TIC and TOC were 1.2 × 10−6–6.0 × 10−2 mg L−1 and 0.08–30 mg L−1 carbon, respectively. Recoveries of 97.4–106.4% for TIC and 96.0–98.5% for TOC were obtained by adding 5 or 50 mg L−1 of carbon to the water samples. The relative standard deviations (RSDs) were 2.6–4.8% for TIC and 4.6–6.6% for TOC (n = 5). The mechanism of the chemiluminescent reaction was also explored and a reasonable explanation about chemical energy transfer from luminol to uranine was proposed. Figure Chemiluminescence profiles in batch system. 1, Injection of 100 μL of K2CO3 into 1.0 mL luminol-1.0 mL H2O2 solution; 2-3 and 4-5, Injection in sequence of 100 μL of K2CO3 and 100 μL of uranine into 1.0 ml luminol-1.0 mL H2O2 solution; Cluminol = 1.0 × 10−7 mol/L, CH2O2 = 1.0 × 10−5 mol/L, Curanine = 1.0 × 10−5 mol/L, CK2CO3 = 1.0 × 10−7 mol/L except for 4-5 where CK2CO3 = 1.0 × 10−4 mol/L  相似文献   

3.
 A differential pulse voltammetric method for the determination of nitrate has been described, which is applicable to the analysis of natural water samples with nitrate levels greater than 2.8 × 10−6 M. A reduction peak for the nitrate ions at a freshly copper plated glassy carbon electrode was observed at about −0.50 V vs Ag ∣AgCl∣KClsatd electrode in a solution of 2.0 × 10−2 M Cu2+, 0.5 M H2SO4 and 1.0 × 10−3 M KCl and exploited for analytical purposes. The working linear range was established by regression analysis and found to extend from 2.8 ×10−6 M to 8.0 × 10−5 M. The proposed method was applied for the determination of nitrate in natural waters. The detection limit of the method was 2.8 × 10−6 M and the sensitivity was 0.9683 A·L/mol. The possible interferences by some ions such as phosphate, nitrite and some halides were determined and found to lead to shifts of the peak position and increasing the peak heights. Received March 15, 1999. Revision July 9, 1999.  相似文献   

4.
 The fluorometric determination of periodate with tetraiodofluorescein has been developed. Under the optimum conditions responses were linear between 4.0×10−7 ∼ 1.0 × 10−5 mol/L of periodate. The detection limit was 1.0 × 10−7 mol/L corresponding to a signal to noise ratio of 2. The proposed method was applied to the determination of periodate in artificial fresh water and kelp sample with good results. Received March 20, 2001 Revision December 19, 2001  相似文献   

5.
Simple and sensitive electrochemical method for the determination of nitrite, based on a nano-alumina-modified glassy carbon electrode (GCE), is described. Nitrite yields a well-defined oxidation peak whose potential is 0.74 V at the nano-alumina-coated GCE in 0.1 mol L−1 phosphate buffer (pH 5.0). Compared with bare GCE, the nano-alumina-modified GCE has evident catalytic effect towards the oxidation of nitrite, and its peak current can be significantly enhanced. Some of the experimental parameters were optimized for the determination of nitrite. The oxidation peak current was proportional to nitrite concentration in the range of 5.0 × 10−8–1.1 × 10−3 mol L−1, and a detection limit of 1.0 × 10−8 mol L−1 was obtained. This method has been successfully used to the determination of nitrite in sausage sample. Furthermore, results obtained by the method have been compared with spectrophotometric method.  相似文献   

6.
 A fluorescence quenching method for the determination of vanadium (V) based on the vanadium- catalyzed oxidation of rhodamine 6G (R6G) with periodate in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA) in sulfuric acid medium is described. The fluorescence was measured with excitation and emission wavelengths of 525 and 555 nm, respectively. The calibration graph for vanadium (V) had linear ranges of 3.0 × 10−9–1.5 × 10−8 mol/l and 1.5 × 10−8–4.0 × 10−8 mol/l, respectively. The detection limit was 1.7 × 10−9 mol/l. The proposed method was successfully applied to the determination of vanadium (V) in river water, rain water and cast iron samples. Received June 29, 2001 Revision October 9, 2001  相似文献   

7.
A rapid, highly sensitive and selective fluorogenic method for the determination of traces of nitrite is described. It is based on the reaction of weakly fluorescent 1,3,5,7-tetramethyl-8-(3,4-diaminophenyl)-difluoroboradiaza-s-indacence (DAMBO) and nitrite in acidic aqueous solution to give 1,3,5,7-tetramethyl-8-(5-benzotriazolyl)-difluoroboradiaza-s-indacene (DAMBO-T), which is highly fluorescent. The optimum reaction conditions and other analytical parameters are investigated to enhance the sensitivity of the method. The fluorescence enhancement at 507 nm is linearly related to the concentration of nitrite in the range of 6.0 × 10−9–5.0 × 10−7 mol L−1 with a correlation coefficient of R = 0.9995 (n = 10) and a detection limit of 1.0 × 10−10 mol L−1. The R.S.D. is 1.12% (n = 10). The method is applied to the determination of nitrite in human saliva samples with the recoveries of 96. 24–105.30%. Correspondence: Ke-Jing Huang, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China  相似文献   

8.
Simultaneous determination of catechol (CC) and hydroquinone (HQ) were investigated by voltammetry based on glassy carbon electrode (GCE) modified by poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G). The modified electrode showed excellent sensitivity and selectivity properties for the two dihydroxybenzene isomers. In 0.1 mol/L phosphate buffer solution (PBS, pH 7.0), the oxidation peak potential difference between CC and HQ was 108 mV, and the peaks on the PDDA-G/GCE were three times as high as the ones on graphene-modified glass carbon electrode. Under optimized conditions, the PDDA-G/GCE showed wide linear behaviors in the range of 1 × 10−6−4 × 10−4 mol/L for CC and 1 × 10−6−5 × 10−4 mol/L for HQ, with the detection limits 2.0 × 10−7 mol/L for CC and 2.5 × 10−7 mol/L for HQ (S/N = 3) in mixture, respectively. Some kinetic parameters, such as the electron transfer number (n), charge transfer coefficient (α), and the apparent heterogeneous electron transfer rate constant (k s), were calculated. The proposed method was applied to simultaneous determine CC and HQ in real water samples of Yellow River with satisfactory results.  相似文献   

9.
A kinetic spectrophotometric method for hydrazine determination in the range of 9.36×10−7 to 4.37×10−5 mol dm−3, based on the inhibitory effect of hydrazine on the oxidation of Victoria Blue 4- R by KBrO3, was developed and validated. Kinetic parameters are reported for both the indicating and the inhibiting reaction. The detection limit was established as 9.98×10−8 mol dm−3. The selectivity of the proposed method was tested considering the influence of different ions that may be present in real samples. The method was successfully applied for hydrazine determination in various samples (very pure water from the water-steam system of a power plant and Isoniazid tablets, a pharmaceutical product).   相似文献   

10.
A sensitive adsorptive anodic stripping procedure for the determination of trace zirconium at a carbon paste electrode (CPE) has been developed. The method is based on adsorptive accumulation of the Zr(IV)-alizarin red S(ARS) complex onto the surface of the CPE, followed by oxidation of adsorbed species. The optimal experimental conditions include the use of 0.10 mol · L−1 ammonium acetate buffer (pH 4.3), ARS, an accumulation potential of 0.20 V (versus SCE), an accumulation time of 2 min, a scan rate of 200 mV · s−1 and a second-order derivative linear scan mode. The oxidation peak for the complex appears at 0.69 V. The peak current is proportional to the concentration of Zr(IV) over the range of 1.0 × 10−9–2.0 × 10−7 mol · L−1, and the detection limit is 3 × 10−10 mol · L−1 for a 2 min adsorption time. The relative standard deviations (n = 8) for 5.0 × 10−8 and 5.0 × 10−9 mol · L−1 Zr(IV) are 3.3 and 4.8%, respectively. The proposed method was applied to the determination of zirconium in ore samples with satisfactory results.  相似文献   

11.
The electrochemical behaviors of metol on an ionic liquid N-butylpyridinium hexafluorophosphate modified carbon paste electrode (IL-CPE) were studied in this paper. The results indicated that a pair of well-defined quasi-reversible redox peaks of metol appeared with the decrease of overpotential and the increase of redox peak current, which was the characteristics of electrocatalytic oxidation. The electrocatalytic mechanism was discussed and the electrochemical parameters were calculated with results of the charge-transfer coefficient (α) as 0.45, the electrode reaction rate constant (k s) as 4.02 × 10−3 s−1, and the diffusion coefficient (D) as 6.35 × 10−5 cm2/s. Under the optimal conditions, the anodic peak current was linear with the metol concentration in the range of 5.0 × 10−6 ∼ 1.0 × 10−3 mol/L (n = 11, γ = 0.994) and the detection limit was estimated as 2.33 × 10−6 mol/L (3σ). The proposed method was successfully applied to determination of metol content in synthetic samples and photographic solutions.  相似文献   

12.
A carbon past electrode modified with [Mn(H2O)(N3)(NO3)(pyterpy)], ( \textpyterpy = 4¢- ( 4 - \textpyridyl ) - 2,2¢:\text6¢,\text2¢¢- \textterpyridine ) \left( {{\text{pyterpy}} = 4\prime - \left( {4 - {\text{pyridyl}}} \right) - 2,2\prime:{\text{6}}\prime,{\text{2}}\prime\prime - {\text{terpyridine}}} \right) complex have been applied to the electrocatalytic oxidation of nitrite which reduced the overpotential by about 120 mV with obviously increasing the current response. Relative standard deviations for nitrite determination was less than 2.0%, and nitrite can be determined in the ranges of 5.00 × 10−6 to 1.55 × 10−2 mol L−1, with a detection limit of 8 × 10−7 mol L−1. The treatment of the voltammetric data showed that it is a pure diffusion-controlled reaction, which involves one electron in the rate-determining step. The rate constant k′, transfer coefficient α for the catalytic reaction, and diffusion coefficient of nitrite in the solution, D, were found to be 1.4 × 10−2, 0.56× 10−6, and 7.99 × 10−6 cm2 s−1, respectively. The mechanism for the interaction of nitrite with the Mn(II) complex modified carbon past electrode is proposed. This work provides a simple and easy approach to detection of nitrite ion. The modified electrode indicated reproducible behavior, anti-fouling properties, and stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   

13.
The electrocatalytical oxidation of hydrazine at low potential using tetracyanoquinodimethanide adsorbed on silica modified with titanium oxide was investigated by cyclic voltammetry and amperometry. The modified electrode was prepared modifying a carbon paste electrode employing lithium tetracyanoquinodimethanide adsorbed onto silica gel modified with titanium oxide. This electrode showed an excellent catalytic activity and stability for hydrazine oxidation. With this modified electrode, the oxidation potential of hydrazine was shifted toward less positive value, presenting a peak current much higher than those observed on a bare GC electrode. The linear response range, sensitivity and detection limit were, respectively, 2 up to 100 μmol l−1, 0.36 μA l μmol−1, and 0.60 μmol l−1. The repeatability of the modified electrode evaluated in term of relative standard deviation was 4.2% for 10 measurements of 100 μmol l−1 hydrazine solution. The number of electrons involved in hydrazine oxidation (4), the heterogenous electron transfer rate constant (1.08 × 103 mol−1 l s−1), and diffusion coefficient (5.9 × 10−6 cm2 s−1) were evaluated with a rotating disk electrode.  相似文献   

14.
 This paper is the study of the fluorescence enhancement of Eu3+-1-ethyl-6-fluoro-4-oxo-7-(1-piperazinyl)-1,8-naphthyridin-3-carbonic acid (enoxacin, EFLX) system by surfactants. It was found that sodium dodecylbenzenesulfonate (SDBS) exhibits great enhancement on the fluorescence of the Eu-EFLX system. The molar ratio is 1:2:1 for Eu:EFLX: SDBS. Under the optimum conditions, the fluorescence intensity is a linear function of europium in the range of 1.0 × 10−8 ∼ 5.0 × 10−6 mol/L, the detection limit is 1.0 × 10−9 mol/L. The application of the Eu-EFLX-SDBS system for the determination of trace europium in rare earth samples gave satisfactory results. Received October 19, 2000. Revision August 10, 2001.  相似文献   

15.
 In this work, a new ligand, 2,9-bis[N,N-bis(carboxymethyl)-aminomethyl]-1,10-phenanthroline (BBCAP), was synthesized and used to establish a novel fluorimetric method for the determination of trace amounts of terbium in a binary system. Its luminescence mechanism was studied. The excitation and emission wavelengths are 284 nm and 547 nm, respectively. Other rare-earth metal ions in 100-fold excess caused no interference. The fluorescence intensity was a linear function of the concentration of terbium in the range of 5.0 × 10−10–1.0 × 10−6 mol/L. The detection limit was 2.0 × 10−11 mol/L (n = 12). The standard addition method was used to determine the terbium in a synthetic rare-earth sample with satisfactory results. This method represents a direct, rapid, selective and sensitive analytical procedure with a widely linear range. Received November 29, 2001 Revision February 9, 2002  相似文献   

16.
A poly(caffeic acid) thin film was deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. The poly(caffeic acid)-modified electrode was used for the determination of ascorbic acid (AA), dopamine (DA), and their mixture by cyclic voltammetry. This modified electrode exhibited a potent and persistent electron-mediating behavior followed by well-separated oxidation peaks toward AA and DA at a scan rate of 10 mV s−1 with a potential difference of 135 mV, which was large enough to determine AA and DA individually and simultaneously. The catalytic peak current obtained was linearly dependent on the AA and DA concentrations in the range of 2.0 × 10−5−1.2 × 10−3 and 1.0 × 10−6−4.0 × 10−5 mol L−1 in 0.15 mol L−1 phosphate buffer (pH 6.64). The detection limits for AA and DA were 9.0 × 10−6 and 4.0 × 10−7 mol L−1, respectively. The modified electrode shows good sensitivity, selectivity, and stability and has been applied to the determination of DA and AA in real samples with satisfactory results.  相似文献   

17.
A novel fluorescence quenching method for the determination of cationic surfactants (CS), specifically cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and cetylpyridinium chloride (CPC), has been developed using water-soluble luminescent CdTe quantum dots (QDs) modified with thioglycolic acid (TGA). The possible interference from heavy and transition metals (HTM) has been efficiently eliminated through simple sample treatment with mercapto cotton made in-house. Under optimum conditions, the extent of fluorescence quenching of CdTe QDs is linearly proportional to the concentration of CS from 2.0 × 10−7 to 7.0 × 10−6 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. The relative standard deviation for 1.0 × 10−6 mol L−1 CTAB is 2.5% (n = 6). The proposed method exhibits high sensitivity and selectivity and furthermore avoided the use of toxic organic solvents and tedious solvent extraction procedures. It has been applied to the determination of trace CS in natural river water and commodity samples with satisfactory results. Potential interference from heavy and transition metals is eliminated during photoluminescence detection of CS through simple sample pre-treatment with mercapto cotton  相似文献   

18.
A highly selective and sensitive chemiluminescence method for the determination of triclosan is proposed. The method is based on the phototransformation of triclosan to a light-emitting precursor in the presence of fluorescein in alkaline medium and the chemiluminescence reaction is then triggered by strong base or oxidants such as N-bromosuccinimide. Based on this reaction an online phototransformation–flow injection manifold was developed, in which the photoreactor comprises a 150-cm-long × 0.8-mm-i.d. piece of PTFE tubing coiled around a 25-W fluorescent lamp, and the phototransformed products were then injected into a carrier stream of borate buffer. After mixing with the oxidant stream the produced light was detected by a photomultiplier. A wide calibration range from 8.0 × 10−8 to 1.0 × 10−4 mol L−1 was obtained under the optimized conditions, and the detection limit was as low as 5.0 × 10−8 mol L−1. The whole process of analysis, including the online phototransformation and subsequent chemiluminescence detection, could be completed in 6 min. Most of the foreign substances tested showed high tolerance levels, and the proposed method was directly applied to the determination of triclosan in toothpaste samples without any pre-separation procedure. Figure Schematic representation of the phototransformation of triclosan and subsequent chemiluminescence reaction  相似文献   

19.
 An electrochemical study of the doxazosin oxidative process at carbon paste electrodes using different voltammetric techniques has been carried out. The process is irreversible and controlled by adsorption, giving rise to an oxidation wave around 1.0 V in citric acid-citrate buffer (pH 3.0). A mechanism based on the oxidation of the amine group is postulated. Two methods based on adsorptive stripping (AdS) of doxazosin at the C8-modified carbon paste electrode (C8-MCPE), before its voltammetric determination, are studied, using differential pulse voltammetry (DPV) and square wave voltammetry (SWV) as redissolution techniques. By means of AdS-DPV and C8-MCPE, doxazosin can be determined over the 1.0 × 10−9 to 3.0 × 10−8 mol L−1 range with a variation coefficient of 2.2% (2.0 × 10−8 mol L−1) and a limit of detection of 7.4 ×10−10 mol L−1. If AdS-SWV is used, a linear range from 1.0 × 10−9 to 4.0 × 10−8 mol L−1 is obtained, the variation coefficient being 2.8% (2.0 × 10−8 mol L−1, and the limit of detection reached 7.7 × 10−10 mol L−1. The AdS-DPV procedure was applied to the determination of doxazosin in urine and formulations. Received March 13, 1999. Revision December 23, 1999.  相似文献   

20.
CeO2 nanoparticles approximately 12 nm in size were synthesized and subsequently characterized by XRD, TEM and UV-vis spectroscopy. Then, a gold electrode modified with CeO2 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode demonstrated strong catalytic effects with high stability towards electrochemical oxidation of rutin. The anodic peak currents (measured by differential pulse voltammetry) increased linearly with the concentration of rutin in the range of 5.0 × 10−7–5.0 × 10−4 mol · L−1. The detection limit (S/N = 3) was 2.0 × 10−7 mol · L−1. The relative standard deviation (RSD) of 8 successive scans was 3.7% for 5.0 × 10−6 mol · L−1 rutin. The method showed excellent sensitivity and stability, and the determination of rutin in tablets was satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号