首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The long-lived (> 1 μsec) transients formed in the flash excitation of the representative photosensitizers methylene blue, eosin Y and pyrene have been investigated and various criteria have been used to distinguish between triplet state intermediates and chemical intermediates. Previous assignments of the triplet transients of methylene blue appeared less secure in view of the photochemical reactivity of this dye and its lack of phosphorescence. Earlier assignments of monomeric and dimeric triplet transients of methylene blue are substantiated, however, by the observations that the rate constant for quenching by oxygen is approximately 1/9th diffusion controlled and the formation rates are commensurate with singlet decay rates and by the observation of triplet-triplet annihilation. Additional evidence in support of monomer triplet assignments for methylene blue and eosin Y is provided by the effect of heavy atom quenchers Cs+, Hg2+ and T1+ on decay rates. Due to chemical reactivity, quenching by Iappears less suitable as a diagnostic test for triplet state intermediates. The effect of N3, which is known to quench singlet oxygen molecules and to alter the course of photosensitized oxidations, on the triplet decay of methylene blue, eosin Y and pyrene is also investigated.  相似文献   

2.
Abstract— The triplet state of crocetin, which is a water soluble carotenoid, has been sensitized by psoralen. The triplet extinction coefficient, εT (73000 dm3 mol-1 cm-1 at 470 nm), the triplet-triplet spectrum and the quantum yield of triplet formation, φT (less than 1%) are reported in aqueous solution.
In order to calculate the extinction coefficient of crocetin it was necessary to obtain εT for psoralen in water (10000dm3 mol-1 cm-1 at 450 nm). This latter value was obtained using the complete conversion technique and is reported with the triplet-triplet spectrum.  相似文献   

3.
Abstract— The triplet state of orotic acid has been studied by flash photolysis. The rate for dimerization has been observed to vary from 2 × 109 M -1 sec-1 at pH 1 where both the triplet and ground state molecules are neutral, to under 108 M-1 sec-1 above pH 9 where both the triplet and ground state molecules are doubly ionized. The p K of the triplet state has been measured as 4.6. The rate of oxygen quenching for the triplet is 2–3 × 109 M-1 sec-1 while the rate of radiationless decay in solution is 0.73 × 104 sec-1. The triplet absorption spectra have been measured for the two ionic forms of the triplet.  相似文献   

4.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

5.
Abstract— Using flash photolysis the rate constants of the triplet decay at pH 7.0 (26°C) of 10-hydroxyethyl-isoalloxazine (2700 s−1), 2'-deoxyRF (2300 s−1), 5'-deoxyRF (3200 s−1), 8-hydroxyRF (18 000 s−1) and 8-aminoRF (28 000 s−1) have been measured. The results agree with other evidence that photochemical properties of flavins are influenced by the interaction of the sidechain with the isoalloxazine nucleus. In addition, our data on RF and FMN indicate that the triplet decay rates given in the literature for these compounds have to be corrected to 3200 s−1 (RF) and 4900 s−1 (FMN), respectively. The rate constants for the quenching of the triplet by ground state molecules for all above compounds are given.  相似文献   

6.
Abstract— Thermolysis of tetramethyl-l,2-dioxetane is a convenient source of triplet acetone, which can be monitored in aerated solutions by the sensitized fluorescence of 9,10-dibromoanthracene. We have investigated the quenching of chemiexcited triplet acetone in air-equilibrated aqueous solutions containing the 9,10-dibromoanthracene-2-sulfonate ion by five classes of compounds: indoles, tyrosine derivatives, quinones, riboflavin, and xanthene dyes. Quenching rates for indoles, tyrosine and its 3,5-dihalogenoderivatives, and xanthene dyes (kq= 108-109 M-1 s-1) are considerably smaller than the diffusion controlled rate, whereas those for quenchers with high electroaffinities, such as quinones (IP = 10–11 eV), approach the diffusion controlled rate (kq= 1010 M-1 s-1). Energy transfer for riboflavin probably occurs by a triplet-singlet Förster type process.
A comparison of the present data with previous studies of quenching of enzymically generated triplet acetone (isobutanal/O2/horseradish peroxidase) by the same classes of quenchers (except riboflavin) reveals that, independent of the nature of the quencher and the deactivation mechanism, the Stern-Volmer quenching constants ( kq t0) are systematically about one order of magnitude higher in the enzymatic system. The difference is attributed to a longer lifetime of triplet acetone in the latter case, "protected" in an enzyme cavity against collisions with dissolved oxygen.  相似文献   

7.
Abstract— Nanosecond laser flash photolysis and pulse radiolysis have been used to generate and characterise the triplet state, and semioxidised and semireduced radicals of haematoporphyrin, and three 0 -acyl compounds derived from it (the monoacetate, the diacetate and the disuccinate).
After 347 nm irradiation in water containing 2% Triton X-100, haematoporphyrin forms the triplet state (φT= 0.92) and photoionises monophotonically (φI= 0.03). For the O -acyl derivatives, φT approaches unity and photoionisation is reduced. In acetone the triplet yield of all four compounds are close to unity. The difference and corrected spectra for the triplet species are presented and decay rates ( k 1˜104s-1) and oxygen quenching constants ( k Q˜1.5times109 M -1s-1) for the triplet state have been measured. The difference and corrected spectra for the semi-reduced species in methanol and semi-oxidised species in aqueous Triton X-100 are presented.
The photophysical characteristics in fluid solution of haematoporphyrin and its 0 -acyl derivatives are rather similar to those previously recorded for other photosensitising porphyrins.  相似文献   

8.
Abstract— Flash photolysis of neutral red between pH 1.3 and pH 11 yields the triplet species 3DH2+23DH+ and 3D. Both 3DH2+2 and 3D exhibit first order decay with rate constants of 1.6 ± 0.3 × 104 s-1 but 3DH+ decays within the lifetime of the flash. Over the entire pH range, ascorbic acid quenches the triplet, forming the semireduced radicals DH3+2 DH2+ and DH, all of which exhibit second order decay with k = 1.8 ± 0.4 ± 108 M -1s-1 most probably by recombination with semioxidized ascorbic acid. The dependence of the rate of decay of radical neutral red on the identity of reversible reductants supports the back-electron transfer mechanism, as does digital simulation of complex radical disproportionation schemes. In contrast to the efficient reduction of triplet neutral red by ascorbic acid, its reduction by EDTA is quite inefficient.  相似文献   

9.
QUENCHING OF CHLOROPHYLL FLUORESCENCE BY NITROBENZENE   总被引:1,自引:0,他引:1  
Abstract—Nitrobenzene quenching of chlorophyll fluorescence in ethanol has been investigated. Steady state relative quantum yields have been measured and fluorescence decay rates were determined using both nanosecond photon counting and picosecond pulses from a mode-locked Nd3+ glass laser.
The fluorescence decay is described by
1( t )= I 0 exp (- t/τ−At1/2 )
the form predicted for decay governed by the kinetics of the continuum model of diffusion controlled reactions. From the parameters of the fluorescence decay, the encounter distance is 5–7 A° the mutual diffusion coefficient is 0.62 × 10--5 cm2s-1± 12%.
Some of the fluorescence quenching is also attributed to static quenching by a nitrobenzene-chlorophyll, ground-state complex. The equilibrium constant for formation of this ground-state complex was determined to be 4.1 M -1. The combined dynamic and static quenching model allows calculation of quantum yields of fluorescence in good agreement with the experimentally determined quantum yields.  相似文献   

10.
Abstract— The triplet states of biliverdin and biliverdin dimethyl ester have been generated using pulse radiolysis excitation. Biliverdin triplet was formed by energy transfer from biphenyl triplet in acetone, absorbed throughout the wavelength range studied (380–1000 nm) and had a half-life of 11.7μs under the cpnditions chosen. Biliverdin dimethyl ester triplet was formed by energy transfer from biphenyl triplet in benzene, likewise absorbed throughout the wavelength range studied (360–1000 nm) and had a half-life of 6.7μs under the conditions used. Both biliverdin and biliverdin dimethyl ester efficiently quench anthracene, naphthacene, but not μ-carotene, triplet states. On the other hand. neither μ-carotene nor oxygen were found to quench the triplet states of biliverdin or biliverdin dimethyl ester. Estimates or limits for the rate constants of all these quenching reactions were obtained. These reactivities suggest that the triplet levels of both biliverdin and biliverdin dimethyl ester lie around 90 kJ mol-1. The triplet energy transfer rate from bilirubin to biliverdin dimethyl ester in benzene was measured to be 1.9 × 109 M-1 s-1. The singlet-triplet intersystem crossing efficiencies of both molecules were very low, limits of 0.004 and 0.001 being found for biliverdin and biliverdin dimethyl ester, respectively, using 347 nm laser excitation.  相似文献   

11.
Abstract— The mechanism of the photoreduction of 9,10-anthraquinone (AQ) in alcohol and hexane has been studied by flash photolysis. The fluorescence spectrum of the photoproduct, 9,10-dihydroxy anthracene shows a large shift between hexane and ethanol. The quantum yields of photoreduction for AQ are solvent-dependent, the reaction between the solvent radical and AQ determining the quantum yield.
The absorption spectrum of the 9,10-anthrasemiquinone (AQH.) has a long-wavelength absorption band with peaks at 631 and 678 nm. The second-order decay constants for AQH. were estimated to be 1.3 × 109, 6.7 × 108 and 2.0 × 108 M -1 sec-1 in ethanol, 2-propanol and ethylene glycol, respectively.
A long-wavelength absorption band was observed for 9,10-anthrasemiquinone radical anion, having peaks at 776 and 860 nm; epsi;max= 1900 at 776 nm. This spectrum is compared with the spectra of 9,10-dihydroxy anthracene mono- and di-anions. The 9,10-anthrasemiquinone radical anion was found to photoreduce quantitatively to 9,10-dihydroxy anthracene mono-anion with a quantum yield of 0.1.  相似文献   

12.
Abstract— The photoreduction of methylene blue in the presence of arylaminomethanesulfonates (RAMS = RC6H4NHCH2SO3Na) was studied by laser and conventional flash photolysis. These compounds quenched the methylene blue triplet deviating from a normal Stern-Volmer behaviour. For low quencher concentrations, a Rehm-Weller relationship was found between the k q's and the DL G 's obtained for the electron transfer reactions. The lack of further quenching at higher [RAMS] is ascribed to the formation of a ground state ion pair between the dye and the anionic quencher which, on excitation, forms a triplet state unable to under go electron transfer for steric reasons. A second order decay rate constant was found for the semireduced species (MB') ( ca. 5 × 109 M -1 s-1, independent of the RAMS used) and is attributed to a proton transfer from the radical zwitterion (RC6H4NH CH2SO3) to MB. The overall dependence on the substituent of the bleaching observed by continuous irradiation follows the triplet behaviour.  相似文献   

13.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

14.
Abstract— The triplet-triplet absorption spectra of six polyenes have been characterised using flash photolysis, in the presence of anthracene as sensitizer, and pulse radiolysis, in the absence of a sensitizer. The polyenes include several which contain carbonyl groups whose triplet states, unlike retinal , could not be detected unsensitized by flash photolysis. The triplet lifetimes appear to be a function of the number of conjugated double bonds, and vary between 7 and 14 μ sec. In general, the longer the polyene, the shorter the lifetime. An empirical linear relation was found between the frequencies of the polyene triplet-triplet absorption maxima, and the frequencies of the corresponding ground singlet-singlet maxima. The rate constants for quenching by oxygen of nine polyene triplet states were determined to lie in the range 2–7 × 109 M -1 sec-1. The possible mechanisms for oxygen quenching of triplet states are discussed and analogies between the results for oxygen quenching of polyenes and of polyacenes are drawn. The rate constant for oxygen quenching of all- trans -β-carotene triplet was the same in benzene and hexane.  相似文献   

15.
Abstract— A kinetic investigation was performed on the photooxidation of methionine sensitized by various porphyrins at different oxygen concentrations. The rate of photooxidation was found to be strongly dependent on the nature of the sensitizer. In the case of hematoporphyrin, chelation of Mg2+ and Zn2+ and especially of Cu2+ and Fe2+ caused a significant decrease of the photosensitizing efficiency. Fluorescence and/or flash photolysis studies showed that such a decrease is ascribed to an enhancement of the non-radiative decay of the first excited singlet state as well as to a reduction of the triplet lifetime. The sensitizing efficiency is also dependent on the nature of the porphyrin side chains. A reaction mechanism involving 1O2 as the oxidizing agent is proposed.  相似文献   

16.
Abstract— Reactions of the triplet state of lumiflavin (3LF) in water adjusted at pH 7.2 were reexamined by means of a Xe-flash photolysis and a laser photolysis. Measurements of the decay of 3LF were made on solutions of LF ranging in the concentration from 4 to 61 times 10-6 mol/dm3. A one-electron reduced and a one-electron oxidized species of lumiflavin (LF- and LF+) were produced in the first decay stage of 3LF with a high efficiency (0.6 ± 0.1) in a bimolecular triplet-triplet reaction. The product radicals (LFH- and LF+) quench 3LF very efficiently (3 ± 0.8 × 109 mol-1dm3 s-1) compared with LF in the ground state (> 2 × 107 dm3 mol-1).  相似文献   

17.
Abstract— In the reaction center of photosynthetic bacteria, with the primary ubiquinone reduced, the triplet state PR of the primary electron donor (a pair of bacteriochlorophylls named P) is PO ulated with a takes place in a few ns. We measured by flash absorption spectroscopy the influence of temperature on formation and decay kinetics of PR and 3Car in the reaction center of several strains of R. sphaeroides . The rate of triplet energy transfer, measured as the decay of PR after a flash, decreases when the temperature is lowered. Between 60 and 30 K the half-time of energy transfer becomes longer than the 3Car half-time decay (about 6 μs) and below 20 K the transfer is slower than the internal decay of PR (about 100 μs). In several cases it is clear that PR and 3Car decay independently and are not in thermal equilibrium. The singlet energy transfer from carotenoid to P occurs with a high efficiency at all temperatures.
The data can be accounted for on the basis of estimated energy levels of PR and 3Car, in the context of the equilibrium 3P ←3D where 3P is the localized triplet state of P-870 and 3D is another triplet state. A reasonable kinetic scheme leads us to estimate that 3D is 0.0025 ± 0.005 eV above 3P. 3D may thus be the state observed by Shuvalov and Parson (1981). We propose that both triplet and singlet energy transfer between P and the carotenoid occur via a bacteriochlorophyll, to which the carotenoid should be tightly coupled via exchange interaction.  相似文献   

18.
Abstract— The extinction coefficient εT, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, Δ D 0T, under demonstrably linear conditions where incident excitation energy, E 0, and ground state absorbance, A 0, are both extrapolated to zero. The result, 7220 ± 320 M -1 cm-1 at 530 nm, validates and slightly corrects many measurements relative to benzophenone of triplet extinction coefficients made by the energy transfer technique, and of triplet yields obtained by the comparative method.
As E 0 and A 0 both decrease, Δ D 0T becomes proportional to their product. In this situation, the ratio R = (1/ A 0)(dΔ D 0T/d E 0) = (εT - εGT. Measurements of R , referred to benzophenone, give (εT - εGT for any substance, without necessity for absolute energy calibration.
Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (εT - εG at 470 nm = 7.3 × 104 M -1 cm-1) give φT= 0.83 ± 0.04.  相似文献   

19.
Abstract— The flash photolysis of aqueous solutions of tyrosine has been studied in the presence of various concentrations of the cyclic disulfide sodium lipoate (thioctic acid, Na+ salt). In addition to the formation of phenoxyl radicals and hydrated electrons (and possibly H atoms) from the photoionization of tyrosine, the characteristic spectrum of the radical anion RSSR- of lipoate was also observed in neutral as well as in alkaline solutions. From the dependence of these yields upon the concentration of lipoate, it was found that a long–lived triplet excited state of tyrosine, rather than the singlet excited state, is involved in these reactions. The negative radical ions RSSR- are formed by two distinct pathways: (a) Na+–lipoate reacts with the solvated electrons which are ejected from the tyrosine triplets 3Tyr → RO.+ e -aq+ H+ followed by e -aq+ RSSR → RSSR-, and (b) by direct interaction of lipoate with triplet excited tyrosine, resulting in the transfer of a negative charge from tyrosine to the disulfide linkage. At high lipoate concentrations, the singlet excited state of lipoate is quenched, k 4= 1.6 × 1010 M -1 sec-1, but this reaction does not lead to the formation of RSSR- radical ions.  相似文献   

20.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号