首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactions of eaq-, H-atom and OH radicals with 3-pyridine methanol (3-PM) and 3-pyridine carboxaldehyde (3-PCA) have been studied at various pHs using pulse radiolysis technique. eaq- was found to be highly reactive with both 3-PM and 3-PCA (k approx. 1010 dm3 mol1 s-1). Semi-reduced species formed in both cases were strongly reducing in nature. In the case of 3-PM, electron addition leads to the formation of pyridinyl radicals whereas in the case of 3-PCA, PyCHOH type radicals are formed. At pH 6.8, H-atom reaction with 3-PCA also gives semi-reduced species (PyCHOH), whereas at pH 1, H-atoms add to the ring. (CH3)2˙COH radicals were found to transfer electron to 3-PCA at all the pH values tested and by making use of changes in the absorption spectra, pKa values of the semi-reduced species were determined to be 4.5 and 10.6. OH radicals were found to undergo addition reaction with 3-PCA, whereas in the case of 3-PM they reacted by H-abstraction as well as addition reaction. By following the yield of methylviologen radical cation formed by electron transfer reaction, it was estimated that approx. 50% of OH radicals react with 3-PM by H-atom abstraction at pH 6.8, giving reducing radicals, whereas at pH 3.2, where 3-PM is in the protonated form, the same is only about 10%. At pH 13, O-˙ radical anions were found to react exclusively by H-atom abstraction. Reaction of SO4-˙ radicals with 3-PCA was found to give a species identical to the one formed by one electron reduction of nicotinic acid at acidic pH values.  相似文献   

2.
Reactions of eaq -, H-atom and OH radicals with 3-pyridine methanol (3-PM) and 3-pyridine carboxaldehyde (3-PCA) have been studied at various pHs using pulse radiolysis technique. eaq - was found to be highly reactive with both 3-PM and 3-PCA (k approx. 1010 dm3 mol 1 s-1). Semi-reduced species formed in both cases were strongly reducing in nature. In the case of 3-PM, electron addition leads to the formation of pyridinyl radicals whereas in the case of 3-PCA, PyCHOH type radicals are formed. At pH 6.8, H-atom reaction with 3-PCA also gives semi-reduced species (PyCHOH), whereas at pH 1, H-atoms add to the ring. (CH3)2 ·COH radicals were found to transfer electron to 3-PCA at all the pH values tested and by making use of changes in the absorption spectra, pK a values of the semi-reduced species were determined to be 4.5 and 10.6. OH radicals were found to undergo addition reaction with 3-PCA, whereas in the case of 3-PM they reacted by H-abstraction as well as addition reaction. By following the yield of methylviologen radical cation formed by electron transfer reaction, it was estimated that approx. 50% of OH radicals react with 3-PM by H-atom abstraction at pH 6.8, giving reducing radicals, whereas at pH 3.2, where 3-PM is in the protonated form, the same is only about 10%. At pH 13, O radical anions were found to react exclusively by H-atom abstraction. Reaction of SO4 radicals with 3-PCA was found to give a species identical to the one formed by one electron reduction of nicotinic acid at acidic pH values.  相似文献   

3.
Reactions of one-electron reducing as well as oxidizing radicals with 4-mercaptopyridine (4-MPy) were studied in aqueous solutions at different pH values. One-electron oxidizing radicals such as N3 and Br2 , react with 4-MPy by electron transfer reaction at pH 11 to give 4-pyridylthiyl radical. The reduction potential for the couple 4-PyS /4-PyS was estimated to be 0.93V vs. NHE by equilibrium reaction with I2 /2I couple. At pH 6.8, where the compound is predominantly present in the thione form, the transient species formed is a cation radical. OH radicals react with 4-MPy by addition to the pyridine ring at pH 6.8 and 11. At pH 0, OH radicals as well as one-electron oxidants like Cl2 and Br2 radicals react with 4-MPy to produce the protonated form of 4-pyridylthiyl radical. At pH 6.8 and 11, eaq reaction with 4-MPy gave an initial adducts which reacted with the parent molecule to give dimer radicals. Acetone ketyl radicals were unable to reduce 4-MPy at neutral pH. Reducing radicals like H-atoms and acetone ketyl radicals reacted with 4-MPy at acidic pH by H-abstraction reaction to give the same species as produced by oxidizing radicals.  相似文献   

4.
The reactions of e aq, H-atoms, OH radicals and some one electron oxidants and reductants were studied with dithio-oxamide (DTO) in aqueous solutions using pulse radiolysis technique. The transient species formed by the reaction of e aq with DTO at pH 6.8 has an absorption band with λ max at 380 nm and is reducing in nature. H-atom reaction with DTO at pH 6.8 also produced the same transient species. The semi-reduced species was found to be neutral indicating that the electron adduct gets protonated quickly. However at pH 1, the species produced by H-atom reaction had a different spectrum with λ max at 360 and 520 nm. Reaction of acetone ketyl radicals and CO2 radicals with DTO at pH 6.8 gave transient spectra which were identical to that obtained by e aq reaction. However at pH 1, the spectrum obtained by the reaction of acetone ketyl radicals with DTO was similar to that obtained by H-atom reaction at that pH. The transient species formed by OH radical reaction with DTO in the pH range 1–9.2 also has two absorption maxima at 360 and 520 nm. This spectrum was identical with the spectrum obtained by H-atom reaction at pH 1. This means that all these radicals viz. OH, H-atom and (CH3)2COH radicals react with DTO at pH 1 by H-abstraction mechanism. The transient species produced was found to be sensitive to the presence of oxygen. One-electron oxidizing radicals such as Br2 −· and SO4 −· radicals reacted with DTO at neutral pH to give the same species as produced by OH radical reaction having absorption maxima at 360 to 520 nm. At acidic pHs, only Br2 −· and Cl2 −· radicals were able to oxidize DTO to give the same species as produced by OH radical reaction. The semioxidized species is a resonance stabilized species with the electron delocalized over the-N-C-S bond. This species was found to be neutral and non-oxidizing in nature.  相似文献   

5.
Reactions of eaq, OH radicals and H atoms were studied with n-allylthiourea (NATU) using pulse radiolysis. Hydrated electrons reacted with NATU (k = 2.8×109 dm3 mol−1 s−1) giving a transient species which did not have any significant absorption above 300 nm. It was found to transfer electrons to methyl viologen. At pH 6.8, the reduction potential of NATU has been determined to be −0.527 V versus NHE. At pH 6.8, OH radicals were found to react with NATU, giving a transient species having absorption maxima at 400–410 nm and continuously increasing absorption below 290 nm. Absorption at 400–410 nm was found to increase with parent concentration, from which the equilibrium constant for dimer radical cation formation has been estimated to be 4.9×103 dm3 mol−1. H atoms were found to react with NATU with a rate constant of 5 × 109 dm3 mol−1 s−1, giving a transient species having an absorption maximum at 310 nm, which has been assigned to H-atom addition to the double bond in the allyl group. Acetoneketyl radicals reacted with NATU at acidic pH values and the species formed underwent reaction with parent NATU molecule. Reaction of Cl.−2 radicals (k = 4.6 × 109 dm3 mol−1 s−1) at pH 1 was found to give a transient species with λmax at 400 nm. At the same pH, reaction of OH radicals also gave transient species, having a similar spectrum, but the yield was lower. This showed that OH radicals react with NATU by two mechanisms, viz., one-electron oxidation, as well as addition to the allylic double bond. From the absorbance values at 410 nm, it has been estimated that around 38% of the OH radicals abstract H atoms and the remaining 62% of the OH radicals add to the allylic double bond.  相似文献   

6.
Thioacetamide (TA) is an organic compound having thioamide group similar to that in thiourea derivatives. Its reactions with eaq, H-atom and OH radicals were studied using the pulse radiolysis technique at various pHs and the kinetic and spectral characteristics of the transient species were determined. The initial adduct formed by the reaction of TA with OH radicals at pH 7 does not absorb light in the 300–600 nm region but reacts with the parent compound to give a transient species with an absorption maximum around 400 nm. At pH 0, the reaction of OH radicals with TA directly gives a similar transient species with absorption maximum at 400 nm. Transient species formed by H-atom reaction with TA and pH 0 has no absorption in the 300–600 nm region but at higher acidity a new transient species is formed which has absorption maximum at 400 nm. This transient absorption observed in the case of both OH and H atom reaction with TA is ascribed to the formation of a resonance stabilized radical similar to that obtained in the case of thiourea derivatives. The species produced by electron reaction viz. electron adduct was found to be a strong reductant and could reduce MV2+ with a high rate constant. H2S was produced as a stable product in the reaction of eaq and its G-value was determined to be about 0.8.  相似文献   

7.
The radiolytic decolourization and peroxide formation have been studied in aqueous solutions of xylenol orange (XO) at different acidities. The G(-XO) increases from 0.78 at pH 11, to 3.70 at pH 3. The peroxide yield also increases from 1.19 at pH 11, to 3.34 in 0.025 mol dm-3 H2SO4. In alkaline solutions only the OH. decolourizes XO whereas in acidic solutions both the H and OH. decolourize XO though G(-XO) due to H-atoms is less. The ionization of the phenolic group in XO influences the e-aq reaction with it. In alkaline solution, the oxidized and reduced XO formed by OH. and e-aq reactions, respectively, react together regenerating original XO. Near 0.025 mol dm-3 H2SO4, there is an abstraction of H-atom from XO by HO2 whereas at other acidities, H2O2 is formed by disproportionation of peroxides. Reaction schemes have been given to explain the various radiolytic yields.  相似文献   

8.
On pulse radiolysis of N2O saturated aqueous solutions of atropine, an optical absorption band (max at 320 nm,e=2.81·103 dm3·mol–1·cm–1) was observed, which is assigned to the product of reaction of OH radicals with the solute. This absorption decayed following second order kinetics with a rate constant of 4.5·108 dm3·mol–1·s–1. The rate constant for the reaction of OH radicals with atropine as estimated by following the build-up kinetics is 2.7·109 dm3·mol–1·s–1. The H atoms also reacted with this compound to produce a transient absorption band behaving similarly to the one observed in the case of reaction with OH radicals. The transient species formed in both cases is assigned to a radical derived by H atom abstraction by H/OH radicals from the parent compound. This radical was unreactive towards 2-mercaptoethanol. e aq was found to react with atropine forming a transient band with max at 310 nm (=3.55·103 dm3·mol–1). Its decay was also second order with a rate constant of 1.64·109 dm3·mol–1·s–1. The bimolecular rate constant for the reaction of e aq with atropine as estimated from the decay of e aq absorption at 720 nm is 3.9·109 dm3·mol–1·s–1. Specific one-electron oxidizing and reducing agents (such as Cl 2 , Tl2+, SO 4 and (CH3)2COH, CO 2 , respectively) failed to oxidize or reduce this compound in aqoues solutions. The radical anion of atropine formed by its reaction with e aq was found to reduce thionine and methyl viologen with bimolecular rate constant of 3.8·109 and 3.2·109 dm3·mol–1·s–1, respectively.  相似文献   

9.
Hydrated electrons (e aq ) formed in water radiolysis react with ethyl propionate with a rate parameter of 7.5×107 mol–1 dm3 s–1. The electron adduct in acidic solutions immediately (<100 ns) dissociates, yielding CH3CH2C=0 radical. This process in alkaline solutions is slower, k=1.4×105 s–1. The hydroxyl radicals abstract H atoms in about 50% from the -position of propionate.  相似文献   

10.
Rate constants for the reactions of e aq ? , H and OH radicals with 2-pyridine carboxaldehyde and 2-pyridine methanol have been determined by pulse radiolysis technique. Reactions of reducing radicals such as acetone ketyl radicals and CO2 ? with these compounds were also evaluated at various pHs. The species produced by the reaction of reducing radicals with these solutes was a strong reductant itself. While pyridinyl were produced in the case of 2-pyridine methanol, one-electron reduction of 2-pyridine carboxaldehyde led to the formation of PyCHOH radical. The one-electron reduction potential of PyCHOH radicals was estimated by establishing an equilibrium with MV+ radical cations to be ?0.6V vs NHE. OH radical reaction with 2-pyridine carboxaldehyde gave an OH adduct, while in the case of 2-pyridine methanol, OH radicals reacted partly by H-abstraction from the ?CH2OH group. SO4 ? radical reaction with 2-pyridine carboxaldehyde produced a species which was reducing in nature. The rate constants for the reaction of e aq ? and OH radicals are compared with similar values obtained in the case of other 2-pyridine derivatives to see if there is any electron-inductive effect.  相似文献   

11.
Spectral, redox and kinetic properties of the transient species formed by the reaction of 2- mercaptopyridine (2-MPy) with oxidants such as OH, Br¯2 . ; N . 3 and Cl¯2 . radicals and reductants such as e¯aq, H-atoms and (CH3)2 . COH radicals have been studied by pulse radiolysis technique. Reaction of one-electron oxidants with 2-MPy at pH 11.5 led to the formation of 2-pyridyl thiyl radical. The reduction potential for the couple C5H4NS . /C5H4NS¯ was estimated to be 0.84 V vs NHE from the equilibrium studies with I¯2 . /2I¯ couple. At pH 6.8, the reaction of N . 3 radical with 2-MPy gave a cation radical derived from 2-MPy. At pH 6.8 and 11.5, OH radicals react with 2-MPy by addition pathway. Reaction of e¯aq with 2-MPy was found to give a reducing radical capable of transferring electron to methyl viologen. At acidic pH, the reaction of (CH3)2 . COH radicals and H-atoms with 2-MPy gave transient species identical to those produced by the reaction of oxidising radicals, namely, OH radicals, Cl¯2 . and Br¯2 . radicals.  相似文献   

12.
Raman spectroscopic measurements were performed at ambient temperature onaqueous silica-bearing solutions (0.005 < m Si < 0.02; 0 < pH < 14). The spectraare consistent with the formation of monomeric Si(OH)o 4, SiO(OH) 3 andSiO2(OH)2– 2 species at acid to neutral, basic, and strongly basic pH, respectively.Raman spectra of aqueous Al-bearing solutions at basic pH confirm thepredominance of the Al(OH) 4 species in a wide concentration range (0.01 < m Al < 0.1).Raman spectra of basic solutions (12.4 < pH < 14.3), containing both Al andSi, exhibit a strong decrease in intensities of SiO(OH) 3, SiO2(OH)2– 2, andAl(OH) 4 bands in comparison with Al-free Si-bearing and Si-free Al-bearingsolutions of the same metal concentration and pH, suggesting the formation ofsoluble Al—Si complexes. The amounts of complexed Al and Si derived fromthe measurements of the Al and Si band intensities in strongly basic solutions(pH 14) are consistent with the formation, between Al(OH) 4 andSiO2(OH)2– 2, of the single Al—Si dimer SiAlO3(OH)3– 4 according to the reactionSiO2(OH)2– 2 + Al(OH) 4 SiAlO3(OH)3– 4 + H2OAt lower pH ( 12.5) the changes in band intensities are consistent with theformation of several, likely more polymerized, Al—Si complexes.  相似文献   

13.
Chromium(III)-phosphate reactions are expected to be important in managing high-level radioactive wastes stored in tanks at many DOE sites. Extensive studies on the solubility of amorphous Cr(III) solids in a wide range of pH (2.8–14) and phosphate concentrations (10–4 to 1.0 m) at room temperature (22±2)°C were carried out to obtain reliable thermodynamic data for important Cr(III)-phosphate reactions. A combination of techniques (XRD, XANES, EXAFS, Raman spectroscopy, total chemical composition, and thermodynamic analyses of solubility data) was used to characterize solid and aqueous species. Contrary to the data recently reported in the literature,(1) only a limited number of aqueous species [Cr(OH)3H2PO4, Cr(OH)3(H2PO4)2–2), and Cr(OH)3HPO2–4] with up to about four orders of magnitude lower values for the formation constants of these species are required to explain Cr(III)-phosphate reactions in a wide range of pH and phosphate concentrations. The log Ko values of reactions involving these species [Cr(OH)3(aq)+H2PO4&#x21CC;Cr(OH)3H2PO4; Cr(OH)3(aq)+2H2PO4&#x21CC;Cr(OH)3(H2PO4)2–2; Cr(OH)3(aq)+HPO2–4&#x21CC;Cr(OH)3HPO2–4] were found to be 2.78±0.3, 3.48±0.3, and 1.97±0.3, respectively.  相似文献   

14.
The decoloration of Acid Blue 62 in aqueous solution was mainly attributed to the attack of the e aq and OH radicals on the dye molecule. The mechanisms of these reactions were investigated in detail including the influence of pH, dose rate and oxygen.  相似文献   

15.
The pulse-radiolysis technique has been employed to understand the reaction mechanism and to characterize the transient species involved in the redox processes taking place in the radiation chemistry of basic fuchsin (BF+). One-electron reduction and oxidation reactions of BF+ have been carried out in homogeneous aqueous solutions employing various reducing (e aq , (CH3)2COH, CO 2 ) and oxidizing (N 3, Br, Cl 2 Br 2 ) radicals. The absorption spectra of the transients formed in the above reactions have been attributed to semi-reduced and semi-oxidized species of BF+, respectively. The kinetic and spectroscopic properties of these transients have been evaluated. The reaction with H and OH radicals have also been performed and compared with those of specific one-electron reducing and oxidizing radicals. These reactions have been inferred predominantly by addition to BF+. Protolytic equilibria involving semi-reduced species of basic fuchsin have been studied over the pH range from 2 to 10 and the pK a has been determined to be 3.9.  相似文献   

16.
Pulse radiolysis studies on thionicotinamide (TNA) have been carried out in aqueous solutions at pH 6.8 and 1. The initial species formed by OH radical reaction with TNA at pH 6.8 was found to react with the parent molecule to give a dimer radical species (max = 420-440 nm). Reaction of Br2 - radicals with TNA was found to give a transient species having max at 380 nm. This spectrum has been assigned to a resonance stabilized species with free electron delocalised over the -N-C-S bond. Reactions of OH and Cl22 - radicals with TNA at pH 1 were found to give identical transient species with max at 420 nm, which decayed by first-order kinetics at a rate of about 8.0 × 103 s-1. This species is suggested to be the protonated form of the resonance-stabilized species formed at pH 6.8 in the reaction of Br2 - with TNA. The rate constant for the reaction was 4 × 109 dm3 mol-1 s-1. Semi-reduced species formed by the reaction of e-aq with TNA (k = 1.6 × 1010 dm3 mol-1 s-1) was found to be a good reductant which could transfer electron to methyl viologen. CO2 - radicals also reacted with TNA to give a reducing species. Although, the absorption peaks in the two cases were at the same wavelengths viz. 380 and 480 nm, the ratios of the peak heights were different suggesting the formation of different species. Hydrogen atoms and (CH3)2COH radicals were found to transfer an electron to TNA at pH 1, as seen by quantitative electron transfer to methyl viologen from the transient species.  相似文献   

17.
The hydrolysis constants of telluric acid were determined by potentiometric titrations at 25°C andI=1.0 mol kg–1 NaClO4. Using these results the partial molar volume change according to the dissociation reaction Te(OH)6(aq) TeO(OH) 5(aq) +H (aq) + was measured densitymetrically.
Das Dissoziationsvolumen der Tellursäure (Kurze Mitteilung)
Zusammenfassung Die Hydrolysekonstanten der Tellursäure wurden bei 25°C undI=1.0 mol kg–1 NaClO4 durch potentiometrische Titrationen bestimmt. Diese Ergebnisse wurden verwendet, um die Volumsänderung zufolge der Dissoziationsreaktion Te(OH)6(aq) TeO(OH) 5(aq) +H (aq) + durch Dichtemessungen zu ermitteln.
  相似文献   

18.
Reaction of Pu(VI) with Si(OH)4 (at concentration 0.004–0.025 mol l–1) in a 0.2 M NaClO4 solution at pH 3–8 is studied by spectrophotometric method. In the range of pH 4.5–5.5, PuO2(H2O)4OSi(OH)3 + complex is formed, while at pH > 6, PuO2(H2O)3O2Si(OH)2 or hydroxosilicate complex PuO2(H2O)3(OH)OSi(OH)3 is recorded. The equilibrium constants are calculated for the reactions of formation of PuO2(H2O)4OSi(OH)3 + and PuO2(H2O)3O2Si(OH)2 and their concentration stability constants: log K 1 = –3.91 ± 0.17 and log K 2 –10.5; log 1= 5.90 ± 0.17 and log 2 12.6. The PuO2(H2O)4OSi(OH)3 + complex is significantly less stable than analogous complex of U(VI). Calculations of the forms of Pu(VI) occurrence at the Si(OH)4 concentration equal to 0.002 mol l–1 showed that the maximum fraction of the PuO2(H2O)4OSi(OH)3 + complex is 10% (pH 6.5), while the fraction of PuO2(H2O)3O2Si(OH)2 is almost 40% (pH 8).  相似文献   

19.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

20.
The reactivity of OH, e-aq and H radicals towards aqueous carboxypyridines: picolinic acid (2-pyridinecarboxylic acid), PA; isonicotinic acid (4-pyridinecarboxylic acid), i-NA; 2,6-pyridinedicarboxylic acid, 2,6-PDCA; and 3,5-pyridinedicarboxylic acid, 3,5-PDCA was investigated in the pH-range 1–13.8. The absorption spectra of the OH-adducts, H-adducts and pyridinyl radicals are given as well as the formation and decay kinetics. In acid (but not in alkaline) solution, the reaction of H-atoms leads to the formation of two distinct products, namely H-adduct and pyridinyl radicals. The yields of pyridinyl radical are: 20% for PA, 75% for i-NA, 60% for 2,6-PDCA and 25% for 3,5-PDCA (a yield of 50% has been found earlier for nicotinic acid, NA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号