首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the local temperature in an ion track utilizing fast exciton recombination in (C3H7NH3)2PbBr4. We obtained the local temperatures of 1000–1500 K for 1.0 MeV H+, 2.0 MeV H+ and He+, and the local temperature was found to be an increasing function of the linear energy transfer. Furthermore, the measured local temperature increased with increasing ion dose, which is attributed to the diffusion of the phonons in an ion track.  相似文献   

2.
Ion-beam irradiation effects on polyimide, Kapton™, were studied with respect to optical and electronic properties. Stack films of Kapton™ (12.5 μm thick) were irradiated to various ion beams in air or vacuo at room temperature and subjected to ultraviolet–visible (UV–vis) spectroscopy, and change in absorbance and energy gap is discussed. The UV–vis absorption spectrum, which is assigned to the transition of electrons in benzene rings from π to π* orbital, upon He2+ (6 MeV/u) irradiation in air, shifted towards longer wavelength direction for all cases, and the shift was more obvious for higher linear energy transfer (LET) ion beams. The energy gap of the transition was estimated, and the H+ and He2+ ion beams caused little change in the transition energy gap Eg, while the heavier ions such as C6+ and Si14+ caused more significant decrease. This decrease is assumed to the structural changes around benzene rings, and the infrared spectroscopy revealed breakage in imide groups next to benzene ring in the repeating unit of polyimide.  相似文献   

3.
A recently discovered phenomenon of excessively high X-ray production is discussed. The high yield is attributed to the build-up of potential on non-conducting targets irradiated with accelerated ion beams, and the subsequent discharge. Ion-beams of1H+,1H2 +,2H+,2H2 +,3He+,3He2+,4He+,14N+,14N2+,16O+ and20Ne+ were used. A new mechanism of X-ray excitation is proposed. The increased X-ray fluxes produced by this process are suitable for analytical applications of high specificity. The mechanism of excitation associated with the process, factors affecting the high X-ray yields, applications and a general overview of the studies undertaken with the various ion beams are given.  相似文献   

4.
The effect of irradiating amorphous poly (ether ether ketone), PEEK, with ions, 11 MeV proton (H+), and 25.6 MeV helium (He2+), has been investigated focusing on the changes in thermal properties. The extent of chain scission and crosslinking was evaluated using the Charlesby‐Pinner equation. Crosslinking increased the glass transition temperature (Tg) in line with the DiBenedetto equation from which the crosslinking constant for each ion was calculated. The effect of irradiation on the thermal degradation kinetics was studied in an argon atmosphere at a constant heating rate by mean of the Chang and the second Kissinger methods. Irradiation significantly reduced the thermal stability of the polymer and its service lifetime. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2212–2221, 2008  相似文献   

5.
High‐resolution mass spectra of helium nanodroplets doped with hydrogen or deuterium reveal that copious amounts of helium can be bound to H+, H2+, H3+, and larger hydrogen‐cluster ions. All conceivable HenHx+ stoichiometries are identified if their mass is below the limit of ≈120 u set by the resolution of the spectrometer. Anomalies in the ion yields of HenHx+ for x=1, 2, or 3, and n≤30 reveal particularly stable cluster ions. Our results for HenH1+ are consistent with conclusions drawn from previous experimental and theoretical studies which were limited to smaller cluster ions. The HenH3+ series exhibits a pronounced anomaly at n=12 which was outside the reliable range of earlier experiments. Contrary to findings reported for other diatomic dopant molecules, the monomer ion (i.e. H2+) retains helium with much greater efficiency than hydrogen‐cluster ions.  相似文献   

6.
The sputtering of bismuth (Bi/Si) thin films deposited onto silicon substrates and irradiated by swift Cuq+ heavy ions (q = +4 to +7) was investigated by varying both the ion energy over the 10 to 26‐MeV range and the ion fluence ϕ from 5.1 × 1013 cm−2 to 3.4 × 1015 cm−2. The sputtering yields were determined experimentally via the Rutherford backscattering spectrometry technique using a 2‐MeV He+ ion beam. The measured sputtering yields versus Cu7+ ion fluence for a fixed incident energy of 26 MeV exhibit a significant depression at very low ϕ‐values flowed by a steady‐state regime above ~1.6 × 1014 cm−2, similarly to those previously pointed out for Bi thin films irradiated by MeV heavy ions. By fixing the incident ion fluence to a mean value of ~2.6 × 1015 cm−2 in the upper part of the yield saturation regime, the measured sputtering yield data versus ion energy were found to increase with increasing the electronic stopping power in the Bi target material. Their comparison to theoretical predicted models is discussed. A good agreement is observed between the measured sputtering yields and the predicted ones when considering the contribution of 2 competitive processes of nuclear and electronic energy losses via, respectively, the SRIM simulation code and the inelastic thermal spike model using refined parameters of the ion slowing down with reduced thermophysical proprieties of the Bi thin films.  相似文献   

7.
The phenomenon of secondary excitation was observed during irradiation of thick targets of boron and gallium nitride with 2 MeV3He+ ions. This effect, though negligible during irradiation with protons or4He+ ions, becomes significant when highly exoergic reactions can occur.  相似文献   

8.
The D2 + was irradiated into SiC up to the saturation and thereafter He+ irradiation was performed to elucidate interaction mechanism between hydrogen isotope retained in SiC and irradiated energetic He+ by means of X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). It was found that D was trapped by both of Si and C by D2 + irradiation and only D bound to Si interacted with irradiated He+ in the initial He+ irradiation stage. Some damaged structures were introduced into SiC by both of D2 + and He+ irradiation. By heating after the irradiation experiments, most of SiC structure was recovered at the temperature above 1000 K. However, some free C was migrated toward the surface and aggregated on the surface of SiC. This fact indicates that the C impurity would contaminate the plasma and/or the tritium breeding materials, which is thought to be contacted with the SiC inserts.  相似文献   

9.
The irradiation effects of Ar+, He+, and S+ with energy from 10 eV to 180 eV on n-InP(100) surface are analyzed by X-ray photoelectron spectroscopy and low energy electron diffraction. After irradiation on the n-InP surface, damage on the surface, displacement of the Fermilevel and formation of sulfur species on S+ exposed surface are found and studied. Successive annealing is done to suppress the surface states introduced by S+ exposure. However, it is unsuccessful in removing the damage caused by noble ions. Besides, S+ ions can efficiently repair the Ar+ damaged surface, and finally form a fine 2×2 InP surface.  相似文献   

10.
In this paper, we compare ionization and dissociation of a series of singly and doubly protonated peptides, namely leucine enkephalin, bradykinin, LHRH and substance P as induced by collisions with keV H+, He+ and He2+. For all peptides under study, the fragmentation pattern depends strongly on the electronic structure of the projectile ions. Immonium ions, side-chains and their fragments dominate the spectrum whereas fragments due to peptide backbone cleavage are weak or even almost absent for He+. Here, resonant electron capture from the peptide is ruled out and only interaction channels accompanied by much higher excitation contribute. Cleavage of the side-chain linkage appears to be a process alternative to backbone fragmentation occurring after internal vibrational redistribution of excitation energy. Depending on the peptide, this process can lead to the loss of a side-chain cation (leucine enkephalin, LHRH) or a neutral side-chain (substance P).  相似文献   

11.
The effect of irradiation of copper films with low-energy He2+ ions on their structural properties has been studied. The surface morphology and structural properties of the samples before and after irradiation have been examined by scanning electron microscopy, energy dispersive analysis, and X-ray diffraction. Bombardment of the initial samples with He2+ ions at a fluence of 1 × 1016ion/cm2 alters the surface morphology of copper films and leads to the formation of nanoscale inclusions of hexagonal shape. An increase in the fluence to 1 × 1017 ion/cm2 and higher results in the formation of cracks and amorphous oxide inclusions on the sample surface.  相似文献   

12.
Stopping power and energy loss straggling data for protons (1H+) and alpha particles (4He+) crossing Formvar thin polymeric foils (thickness of ~0.3 μm) have been measured in the energy range (0.3–2.7) MeV by using the indirect transmission technique. The determined stopping power data were compared to SRIM-2010, PSTAR or ASTAR calculation codes and then analyzed in term of the modified Bethe–Bloch theory to extract the target mean excitation and ionization potential 〈I〉. A resulting value of 〈I〉≈(69.2±1.8) eV was deduced from proton stopping data. The measured straggling data were corrected from surface roughness effects due to target thickness inhomogeneity observed by the atomic force microscopy (AFM) technique. The obtained data were then compared to derived straggling values by Bohr's and Bethe–Livingston's classical theories or by Yang's empirical formula. A deviation of ~40%–80% from the Bohr's straggling value has been observed for all reported energies, suggesting that the Bohr theory cannot be correctly applied to describe the electronic energy loss straggling process with the used low thickness of Formvar foil. The inner-shell contribution of target electrons to energy loss process is also advanced to explain the observed deviation from experiment in case of He+ ions. Finally, the reliability of Bragg's additivity rule was discussed in case of stopping power and straggling results.  相似文献   

13.
Auger electron spectroscopy (AES) sputter depth profiling of an ISO reference material of the GaAs/AlAs superlattice was investigated using low‐energy Ar+ ions. Although a high depth resolution of ~1.0 nm was obtained at the GaAs/AlAs interface under 100 eV Ar+ ion irradiation, deterioration of the depth resolution was observed at the AlAs/GaAs interface. The Auger peak profile revealed that the enrichment of Al due to preferential sputtering occurred during sputter etching of the AlAs layer only under 100 eV Ar+ ion irradiation. In addition, a significant difference in the etching rates between the AlAs and GaAs layers was observed for low‐energy ion irradiation. Deterioration of the depth resolution under 100 eV Ar+ ion irradiation is attributed to the preferential sputtering and the difference in the etching rate. The present results suggest that the effects induced by the preferential sputtering and the significant difference in the etching rate should be taken into account to optimize ion etching conditions using the GaAs/AlAs reference material under low‐energy ion irradiation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
NiO thin films grown on Si (100) substrate by electron beam evaporation method and sintered at 700 °C were irradiated with 200 MeV Au15+ ions. The fcc structure of the sintered films was retained up to the highest fluence (1×1013 ions cm?2) of irradiation. However the microstructure of the pristine film underwent a considerable modification with increasing ion fluence. 200 MeV Au ion irradiation led to compressive stress generation in NiO medium. The diameter of the stressed region created by 200 MeV Au ions along the ion path was estimated from the variation of stress with ion fluence and found to be ~11.6 nm. The film surface started cracking when irradiated at and above the fluence of 3×1012 ions cm?2. Ratio of the fractal dimension of the cracked surface obtained at 200 MeV and 120 MeV (Mallick et al., 2010a) Au ions was compared with the ratio of the radii of ion tracks calculated based on Coulomb explosion and thermal spike models. This comparison indicated applicability of thermal spike model for crack formation.  相似文献   

15.
We studied the time‐of‐flight secondary ion mass spectrometry fragmentation mechanisms of polystyrenes—phenyl‐fluorinated polystyrene (5FPS), phenyl‐deuterated polystyrene (5DPS), and hydrogenated polystyrene (PS). From the positive ion spectra of 5FPS, we identified some characteristic molecular ion structures with isomeric geometries such as benzylic, benzocyclobutene, benzocyclopentene, cyclopentane, and tropylium systems. These structures were evaluated by the B3LYP‐D/jun‐cc‐pVDZ computation method. The intensities of the C7H2F5+ (m/z = 181), CyPent‐C9H3F4+ (m/z = 187), CyPent‐C9H4F5+ (m/z = 207), and CyPent‐C9H2F5+ (m/z = 205) ions were enhanced by resonance stabilization. The positive fluorinated ions from 5FPS tended to rearrange and produce fewer fluorine‐containing molecular ions through the loss of F (m/z = 19), CF (m/z = 31), and CF2 (m/z = 50) ion fragments. Consequently, the fluorine‐containing polycyclic aromatic ions had much lower intensities than their hydrocarbon counterparts. We propose the fragmentation mechanisms for the formation of C5H5+, C6H5+, and C7H7+ ion fragments, substantiated with detailed analyses of the negative ion spectra. These ions were created through elimination of a pentafluoro‐phenyl anion (C6F5) and H+, followed by a 1‐electron‐transfer process and then cyclization of the newly generated polyene with carbon‐carbon bond formation. The pendant groups with elements of different electronegativities exerted strong influences on the intensities and fragmentation processes of their corresponding ions.  相似文献   

16.
The effect of mutual Coulomb-mediated interactions between ions of two different mass-to-charge ratios (but equal ion cyclotron orbital radii) on their Fourier transform ion cyclotron resonance (FT/ICR) mass spectral frequency difference is derived analytically and measured experimentally. For a cylindrical ion trap, ion packets are modeled theoretically as infinitely extended lines of charge, and contributions to cyclotron frequency difference due to direct Coulomb repulsion between the lime charges as well as the forces arising from image charge induced on the trap electrodes by each line charge are calculated. A striking theoretical prediction is that the effect on ICR frequency difference of mutual Coulomb repulsion between ions in a mass doublet may be compensated by the image-charge effect. As a result, there is an optimal (calculable) ion cyclotron orbital radius at which the measured cyclotron orbital frequency difference between ions of two different mass-to-charge ratios is independent of mutual Coulomb-mediated interactions between the two components of the mass doublet! Moreover, if the two mass-doublet component ions are present in equal numbers, then the measured ion cyclotron orbital frequency difference is also independent of all Coulomb-mediated interactions between the two types of ions! Thus, the single largest systematic error in measurement of mass difference in a mass doublet by FT/ICR mass spectrometry may be virtually eliminated by appropriate control of ICR orbital radius and/or by performing measurements at various relative abundance ratios and extrapolating to equal relative abundance of the two mass-doublet components. We report experimental tests and verification of these predictions for two different mass doublets: 3He+/3H+ (cylindrical trap at 4.7 Tesla) and 12C1H 2 + /14 N+ (cubic trap at 7.0 Tesla). From the latter measurement, we determine the mass of atomic nitrogen as m(14N)=14.003 074 014(19) u.  相似文献   

17.
Water radiolysis has been investigated with heavy ions having energies up to 28 GeV provided from the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). Beams of 4He2+, 12C6+, 20Ne10+, 28Si14+, 40Ar18+ and 56Fe26+ with respective energies of 150, 400, 400, 490, 500 and 500 MeV/u corresponding LET values of 2.2, 13, 30, 54, 92 and 183 eV/nm, respectively, were taken for the irradiation. The LET changes in sample solutions can be neglected due to their high energies for the irradiation of 1-cm cells. Primary g values have been determined for three important products, hydrated electron (eaq), hydroxyl radical (·OH), and hydrogen peroxide (H2O2) as track segment yields (differential yields) under the conditions of neutral pH.With increasing LET, the g values of eaq and ·OH decrease from 2.4 and 2.6 in 4He2+ radiolysis to 0.9 and 1.1 (100 eV)−1 in 56Fe26+ radiolysis, respectively. It was also found that the primary g value of eaq is smaller than that of ·OH for any type of ion beam. For the 12C6+ beam, other energies such as 290, 220, 135 MeV/u were taken for the irradiation to investigate the effects of type or atomic number of ions on the measured yields. Furthermore, effects of dissolved oxygen on enhancement of H2O2 production have also been investigated with aerated NaNO3 solutions. The presence of dissolved oxygen caused 15–35% enhancement in H2O2 yields for all beams. In addition, the results of the present work were compared with reported track segment yields.  相似文献   

18.
The backscattering of4He+ ions of a few MeV has been used to measure the state of cure of oleo-resinous lacquer films on timplate. The elemental ratio of carbon to oxygen was studied as a function of curing temperature and duration of curing. This parameter could be determined rapidly enough to be used for process control and the precision of the method allowed stoving temperatures to be measured within manufacturing tolerance.  相似文献   

19.
The formation of cluster ions when hydrogen molecular ions H 2 + and H 3 + are injected into a drift tube filled with helium gas at 4.4 K has been investigated. When H 2 + ions are injected, cluster ions HHe x + (x≦14) are produced. No production of H2He x + ions is observed. When H 3 + ions are injected, cluster ions HHe x + (x≦14) are produced as well as H3He x + (x≦13), and very small signals corresponding to H2He x + (3≦x≦10) are observed. Information on the stability of HHe x + and H3He x + is derived from the drift field dependence of the cluster size distributions. The cluster sizex=13 is found to be a magic number for HHe x + , and for H3He x + ,x=10 and 11.  相似文献   

20.
Bimetallic Au–Pd nanoparticles were synthesized under high-energy irradiation fields (1.17 and 1.33 MeV γ-rays, 9 MeV electrons, and 1.6 GeV C ions) from solutions containing Au3+ and Pd2+ and cationic surfactant (sodium dodecyl sulfate). Particles synthesized by the irradiation were observed using conventional transmission electron microscope (TEM) and annular dark-field scanning transmission electron microscopy (ADF-STEM). The particles synthesized by γ-rays and C ion irradiation exhibit core–shell structure with a Au-core and a Pd-shell. The dependence of the size distribution of nanoparticles on the dose rate is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号