首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we present a simple and non-invasive approach to the preparation of semi-conducting single-walled carbon nanotubes (SWCNTs) through selective destruction of the metallic counterparts present in the starting material. Most separation techniques require chemical treatment, the application of ultrasound, or the addition of auxiliary molecules, which lead to the introduction of defects and impurities. In this contribution, laser ablation SWCNTs were selectively oxidised via long-term heating leading to the enrichment of semi-conductive nanotubes. Spectroscopic analysis demonstrates that the selective character of oxidation occurs only in the optimal temperature range, determined by thermo-gravimetric analysis. By tuning the process parameters, one can obtain a sample exhibiting different purity (up to 95 % of semi-conducting nanotubes) and separation efficiency. The samples’ quality and yield of separation were determined by UV-VIS-NIR spectroscopy, Raman spectroscopy, and TG analysis. The approach presented is readily scaleable.  相似文献   

2.
An increase in the radiation yield of paramagnetic centers in H2SO4 + nanotubes (NTs) solutions was evidence of the sensitizing influence of NTs on the low-temperature radiolysis of sulfuric acid, that is, on excitation energy and charge transfer. Under the conditions selected, the influence of NTs extended to distances of 100–300 nm. The presence of NTs also influenced the interstice nanodiffusion of atomic hydrogen by decreasing kinetic heterogeneity of the vitrified matrix surrounding NTs. No chemical interaction between atomic hydrogen and carbon NTs was observed at 77–120 K. The diffusion of radical-base anions occurred following the vacancy mechanism and was independent of the presence of NTs. Nanotubes did not form a separate phase as sulfuric acid solutions were cooled to 77 K. The transition from the vitreous to supercooled liquid state was observed as irradiated and nonirradiated solutions were heated to 175 K; no phase transitions occurred over the temperature range 180–300 K. For the first time, substantial changes in the electronic spectra of sulfuric acid solutions of NTs with time were observed: an intense additional absorption band at 320 nm appeared in the spectra in several days. This band was supposedly related to the formation of complexes between H2SO4 molecules and the surface of NTs.  相似文献   

3.
We show that, when subjected to microwave fields, surfactant-stabilized single-walled carbon nanotubes (SWNTs) develop polarization potentials at their extremities that readily drive electrochemical reactions. In the presence of transition metal salts with high oxidation potential (e.g., FeCl3), SWNTs drive reductive condensation to metallic nanoparticles with essentially diffusion-limited kinetics in a laboratory microwave reactor. Using HAuCl4, metallic particles and sheaths deposit regioselectively at the SWNT tips, yielding novel SWNT-metal composite nanostructures. This process is shown to activate exclusively metallic SWNTs; a degree of diameter selectivity is observed using acceptors with different oxidation potentials. The reaction mechanism is shown to involve Fowler-Nordheim field emission in solution, where electric fields concentrate at the SWNT tips (attaining approximately 10(9) V/m) due to the SWNT high aspect ratio (approximately 1000) and gradient compression in the insulating surfactant monolayer. Nanotube antenna chemistry is remarkably simple and should be useful in SWNT separation and fractionation processes, while the unusual nanostructures produced could impact nanomedicine, energy harvesting, and synthetic applications.  相似文献   

4.
Single-walled carbon nanotubes have been reacted with osmium tetroxide (OsO(4)) in solution in the presence of O(2) and UV irradiation at 254 nm. We observe one main structural motif, namely thickly coated nanotube structures, densely covered with OsO(2), consisting of multiple bundles of derivatized tubes. In a few instances, bridging uncoated tubes, connecting these thickly coated structures, incorporate a number of smaller nanotube bundles, projecting out from the larger functionalized aggregates of tubes. It is believed that OsO(2) (a) initially forms on the nanotubes by the preferential covalent sidewall functionalization of metallic nanotubes and (b) subsequently self-aggregates. The formation of an intermediate charge-transfer complex is likely the basis for the observed selectivity and reactivity of metallic tubes. Extensive characterization of these osmylated adducts has been performed using a variety of electron microscopy and optical spectroscopy techniques.  相似文献   

5.
Upon laser irradiation in air, metallic single-walled carbon nanotubes (SWNTs) in carbon nanotube thin film can be destroyed in preference to their semiconducting counterparts when the wavelength and power intensity of the irradiation are appropriate and the carbon nanotubes are not heavily bundled. Our method takes advantage of these two species' different rates of photolysis-assisted oxidation, creating the possibility of defining the semiconducting portions of carbon nanotube (CNT) networks using optical lithography, particularly when constructing all-CNT FETs (without metal electrodes) in the future.  相似文献   

6.
A derivatized porphyrin with long alkyl chains, 5,10,15,20-tetrakis(hexadecyloxyphenyl)-21H,23H-porphine, is selective toward semiconducting single-walled carbon nanotubes (SWNTs) in presumably noncovalent interactions, resulting in significantly enriched semiconducting SWNTs in the solubilized sample and predominantly metallic SWNTs in the residual solid sample according to Raman, near-IR absorption, and bulk conductivity characterizations.  相似文献   

7.
In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way.  相似文献   

8.
Exohedrally functionalised fullerenes have been inserted in single-walled carbon nanotubes (SWNTs) with the aid of supercritical carbon dioxide to form peapods; C(61)(COOEt)(2) are encapsulated in SWNTs in high yield, whereas C(61)(COOH)(2) aggregate via hydrogen bonding to form a supramolecular complex, which sterically hinders encapsulation and causes it to adhere to the exterior surface of the SWNTs.  相似文献   

9.
While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.  相似文献   

10.
Single-walled carbon nanotubes (SWNTs) with amino acids covalently attached to their side walls, viz., “nanotube-aminoacids,” have been prepared starting from colloidal solutions of fluorinated SWNTs (F-SWNTs) and amino acids in o-dichlorobenzene and heating at 80–150 °C in the presence of pyridine. The syntheses were carried out with the F-SWNTs of approximately 2: 1 (C: F) stoichiometry and several natural α-aino acids with both pro-tected and unprotected carboxyl groups, such as glycine ethyl ester hydrochloride, L-serine ethyl ester hydrochloride, l-cysteine, and trans-4-hydroxy-l-proline. The nanotube-aminoacids have been characterized by Raman and FTIR spectroscopy, atomic force, scanning, and transmission electron microscopies, and thermal gravimetric analysis (TGA). Based on TGA data, the degree of sidewall functionalization in the synthesized SWNT derivatives was estimated to be in the range from one of 32 to one of 8 carbon atoms, depending on the amino acid nature and reaction conditions used. The amino acid-functionalized SWNTs, prepared in this work by simple and inexpensive one-step method, can be valuable precursors for peptide synthesis and targeted drug delivery, design and fabrication of nanocomposites and fibers, and other biomedical and engineering applications. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1035–1043, May, 2008.  相似文献   

11.
Selective oxidation on metallic carbon nanotubes by halogen oxoanions   总被引:1,自引:0,他引:1  
Chlorine oxoanions with the chlorine atom at different oxidation states were introduced in an attempt to systematically tailor the electronic structures of single-walled carbon nanotubes (SWCNTs). The degree of selective oxidation was controlled systematically by the different oxidation state of the chlorine oxoanion. Selective suppression of the metallic SWCNTs with a minimal effect on the semiconducting SWCNTs was observed at a high oxidation state. The adsorption behavior and charge transfer at a low oxidation state were in contrast to that observed at a high oxidation state. Density functional calculations demonstrated the chemisorption of chloro oxoanions at the low oxidation state and their physisorption at high oxidation states. These results concurred with the experimental observations from X-ray photoelectron spectroscopy. The sheet resistance of the SWCNT film decreased significantly at high oxidation states, which was explained in terms of a p-doping phenomenon that is controlled by the oxidation state.  相似文献   

12.
The efficient and controllable synthesis, the detailed characterization, and the chemical postfunctionalization of polycarboxylated single-walled carbon nanotubes SWCNT(COOH)(n) are reported. This innovative covalent sidewall functionalization method is characterized by (a) the preservation of the integrity of the entire σ-framework of SWCNTs; (b) the possibility of achieving very high degrees of addition; (c) control of the functionalization degrees by the variation of the reaction conditions (reaction time, ultrasonic treatment, pressure); (d) the identification of conditions for the selective functionalization of semiconducting carbon nanotubes, leaving unfunctionalized metallic tubes behind; (e) the proof that the introduced carboxylic acid functionalities can serve as versatile anchor points for the coupling to functional molecules; and (f) the application of a subsequent thermal degradation step of the functionalized semiconducting tubes leaving behind intact metallic SWCNTs. Functional derivatives have been characterized in detail by means of Raman, UV-vis/nIR, IR, and fluorescence spectroscopy as well as by thermogravimetric analysis combined with mass spectrometry, atomic force microscopy, and zeta-potential measurements.  相似文献   

13.
14.
15.
Single-walled carbon nanotubes possess unique properties that make them a potentially ideal material for chemical sensing. However, their extremely small size also presents technical challenges for realizing a practical sensor technology. In this tutorial review we explore the transduction physics by which the presence of molecular adsorbates is converted into a measurable electronic signal, and we identify solutions to the problems such as nanotube device fabrication and large, low-frequency noise that have inhibited commercial sensor development. Finally, we examine strategies to provide the necessary chemical specificity to realize a nanotube-based detection system for trace-level chemical vapor detection.  相似文献   

16.
Vertical array growth of small diameter single-walled carbon nanotubes   总被引:2,自引:0,他引:2  
A hot filament chemical vapor deposition method has been developed to grow vertical array single-walled carbon nanotubes (SWNTs). In this study, a hot filament (temperature greater than 2000 degrees C) was used to activate gas mixtures of hydrogen and carbon containing species at sub-atmospheric pressures. Silicon substrates decorated with islands of iron were directly inserted into a preheated furnace in which a hot filament is activating the gas. Vertical arrays of SWNTs are produced with diameters ranging from 0.78 to 1.6 nm. The samples were characterized with Raman and fluorescence spectroscopy and SEM and TEM microscopy.  相似文献   

17.
We present the first quantitative assessment of the maximum amount of nanotubes that can exist in the isotropic phase () of single-walled carbon nanotubes (SWNTs) in Br?nsted-Lowry acids. We employ a centrifugation technique in conjunction with UV-vis-nIR spectroscopy to quantify , which is also the critical concentration of the isotropic-nematic transition of SWNTs in strong acids. Centrifugation of biphasic dispersions of SWNTs, that is, acid dispersions consisting of an isotropic phase in equilibrium with an ordered nematic liquid crystalline phase, results in a clear phase separation, where the isotropic phase is supernatant. Dilution of the isotropic phase with a known amount of acid followed by UV-vis-nIR absorbance measurements yields , that is, the maximum concentration of SWNTs that can exist in the isotropic phase in a given acid for a given SWNTs' length distribution. At low SWNT concentration (below 200 ppm) in superacids, light absorbance in the range from 400 to 1400 nm scales linearly with concentration. This Beer's law behavior yields calibration curves for measuring SWNTs' concentration in acids. We find that the critical concentration of the isotropic-nematic transition increases with acid strength in accordance with the previously proposed sidewall protonation mechanism for dispersing SWNTs in acids.  相似文献   

18.
Single-walled carbon nanotubes (SWNTs), being hydrophobic by nature, aggregate in water to form large bundles. However, isolated SWNTs possess unique physical and chemical properties that are desirable for sensing and biological applications. Conventionally isolated SWNTs can be obtained by wrapping the tubes with biopolymers or surfactants. The binding modes proposed for these solubilization schemes, however, are less than comprehensive. Here we characterize the efficacies of solubilizing SWNTs through various types of phospholipids and other amphiphilic surfactants. Specifically, we demonstrate that lysophospholipids, or single-chained phospholipids offer unprecedented solubility for SWNTs, while double-chained phospholipids are ineffective in rendering SWNTs soluble. Using transmission electron microscopy (TEM) we show that lysophospholipids wrap SWNTs as striations whose size and regularity are affected by the polarity of the lysophospholipids. We further show that wrapping is only observed when SWNTs are in the lipid phase and not the vacuum phase, suggesting that the environment has a pertinent role in the binding process. Our findings shed light on the debate over the binding mechanism of amphiphilic polymers and cylindrical nanostructures and have implications on the design of novel supramolecular complexes and nanodevices.  相似文献   

19.
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a new, bimetallic FeRu catalyst affords SWNT growth with narrow diameter and chirality distribution in methane CVD. At 600 degrees C, methane CVD on FeRu catalyst produced predominantly (6,5) SWNTs according to UV-vis-NIR absorption and photoluminescence excitation/emission (PLE) spectroscopic characterization. At 850 degrees C, the dominant semiconducting species produced are (8,4), (7,6), and (7,5) SWNTs, with much narrower distributions in diameter and chirality than materials grown by other catalysts. Further, we show that narrow diameter/chirality growth combined with chemical separation by ion exchange chromatography (IEC) greatly facilitates achieving single (m,n) SWNT samples, as demonstrated by obtaining highly enriched (8,4) SWNTs with near elimination of metallic SWNTs existing in the as-grown material.  相似文献   

20.
The use of NEXAFS spectroscopy in studying the electronic structure and chemical composition of pristine, wet-air oxidized, and sidewall-ozonized nanotubes is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号