首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In methanol, the reaction of Cu(ClO(4))(2).6H(2)O and a sterically constrained piperazine imine phenol ligand (H(2)L), in the presence of NEt(3), affords a novel tetranuclear copper(II) complex of formula [Cu(II)(4)(mu(3)-L)(2)(mu-OH)(2)(H(2)O)(2)](ClO(4))(2).H(2)O (1). The X-ray structure of this complex shows an elongated Cu(4) quasi-tetrahedron coordinated to two hexadentate chair-(e,a)-mu(3)-piperazine bridging ligands. Variable-temperature magnetic studies show an S(t) = 0 spin ground state resulting from antiferromagnetic interactions between Cu(II) ions within the complex.  相似文献   

2.
The reaction in water of Cu(OH)(2) with 2,2'-bipyridine (bipy) and (NH(4))(2)HPO(4) in a 4 : 4 : 2 molar ratio under an inert atmosphere leads to the formation of a tetranuclear copper(II) complex of formula {[(H(2)O)(2)Cu(4)(bipy)(4)(mu(4)-PO(4))(2)(mu(2)-OH)] x 0.5 HPO(4) x 15.5 H(2)O}, 1, with butterfly topology. The structure of the tetranuclear core in 1 consists of four crystallographically unique copper(II) ions in approximate square-pyramidal geometry with each coordinated to a bipy ligand and interacting through two mu(4)-O,O',O'-phosphate bridges. Additional bridging between Cu(3) and Cu(4) is provided by a hydroxide ligand, whereas two water molecules cap the Cu(1) and Cu(2) square pyramids to yield a N(2)O(3) chromophore at each copper atom. Adjacent tetranuclear units align in anti-parallel fashion where proximate metal-bound water molecules interact with each other through both intra- and inter-molecular H-bonding to link two such clusters. These pairs then further associate through pi[...]pi interactions between bipy ligands to form a 2D sheet with neighbouring sheets separated by H-bonded lattice water molecules, which form a 2D H-bonded network. Variable-temperature magnetic susceptibility measurements performed upon 1 reveal net intramolecular ferromagnetic coupling between the copper(II) ions and this is supported and rationalized by a DFT study.  相似文献   

3.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

4.
Deprotonation of the tridentate isoindoline ligand 1,3-bis[2-(4-methylpyridyl)imino]-isoindoline, 4'-MeLH, and reaction with hydrated zinc(II) perchlorate produces an unexpected trinuclear Zn(II) complex, [Zn(3)(4'-MeL)(4)](ClO(4))(2).5H(2)O (1), whereas reaction with hydrated copper(II) perchlorate in methanol produces the expected mononuclear product, [Cu(4'-MeL)(H(2)O)(2)]ClO(4) (2). X-ray diffraction shows that the trinuclear Zn(II) complex (1) contains a linear zinc backbone, and the arrangement of ligands about the outer chiral zinc(II) atoms is helical. The two terminal zinc ions exhibit approximate C(2) site symmetry, with tetrahedral coordination by two pyrrole and two pyridyl nitrogen atoms of the potentially tridentate isoindoline ligands. The central zinc ion exhibits approximate tetrahedral symmetry, with coordination by four pyridyl nitrogen atoms of four different isoindoline ligands. Pyridyl-pyrrole intramolecular pi-stacking interactions contribute to the stability of the trinuclear cation. The structure of the mononuclear copper(II) complex cation in 2 is best described as a distorted trigonal bipyramid. The isoindoline anion binds Cu(II) in both axial positions and one of the equatorial positions; water molecules occupy the other two equatorial positions.  相似文献   

5.
A series of metal complexes were achieved from the metal-assisted solvolysis reaction of di-pyridylketone azine (dpka). The tetranuclear nickel cluster , [Ni(2)[dpk(O)(OH)][dpk(O)(OCH(3))](N(3))(2)](2), is centrosymmetric with a central core described as an edge-shared triangle core. Neighboring Ni(II) ions are alternately bridged by (micro(2)-N(3), micro(3)-O) and (micro(2)-O, micro(3)-O) double bridges. Complex , [Cu(4)[dpk(O)(OCH(3))](4)(N(3))(2)](CuCl(2))(2) contains a tetranuclear cluster and two identical [CuCl(2)]M(-) anions. The tetranuclear structure has two crystallographically imposed twofold axes, in which the four copper ions are arranged to be rhombic shape. The neighboring copper(ii) ions along the lateral are bridged by single micro(2)-O from the ligand dpk(O)(OCH(3)) and the short diagonal copper ions are bridged by two symmetric end-on azides. In dinuclear Cu(ii) complex [Cu(2)[dpka(OCH(2)CH(3))]Cl(2)](ClO(4)) (3), the metal centers are coordinated in a planar configuration and bridged by a -N-N- bridge. It is also observed that the Cl atom coordinated to one Cu(II) center is also weakly coordinated to another inversion related Cu(II) to generate a centrosymmetric dimer. The metal centers in one-dimensional polymeric Cu(ii) complex [Cu(2)[dpka(OCH(3))](N(3))(2)(ClO(4))](n) (4), however, are bridged by a -N-N- bridge and an end-to-end azide bridge, alternately. Magnetic susceptibility measurements indicate that shows ferromagnetic interaction within the tetranuclear cluster, and that displays moderately strong antiferromagnetic interaction (J = -56.7 cm(-1)) for the bis(micro-N(3)) bridge. For compound , it shows strong antiferromagnetic coupling (J = -286 cm(-1)) between the intradinuclear Cu(II) ions mediated by the single N-N bridge and negligible magnetic interactions between the adjacent dinuclear Cu(II) ions mediated by the single end-to-end azide bridge. The mechanism of the metal-assisted solvolysis reaction was also discussed.  相似文献   

6.
Sreerama SG  Pal S 《Inorganic chemistry》2002,41(19):4843-4845
In methanol, the reaction of Mn(ClO(4))(2).6H(2)O and 1,2-bis(biacetylmonoximeimino)ethane (H(2)bamen) in the presence of triethylamine affords a trinuclear complex having the formula [Mn(3)(mu(3)-O)(mu(3)-bamen)(3)]ClO(4).2H(2)O. The structure of this complex shows a symmetric planar central [Mn(III)(3)(mu(3)-O)] unit coordinated to three hexadentate bridging (via oximate groups) ligands. The N(4)O(3) coordination sphere around each metal center is very close to pentagonal-bipyramidal. A cyclic voltammogram of the complex displays two reversible and an irreversible response due to Mn(III)(3) --> Mn(III)(2)Mn(IV), Mn(III)(2)Mn(IV) --> Mn(III)Mn(IV)(2), and Mn(III)Mn(IV)(2) --> Mn(IV)(3) oxidation processes, respectively. Cryomagnetic data reveal that the complex is ferromagnetic.  相似文献   

7.
Reaction of Cu(ClO(4))(2) x 6H(2)O with a racemic mixture of the novel chiral ligand N-(1,2-bis(2-pyridyl)ethyl)pyridine-2-carboxamide (PEAH) affords only the homochiral dimeric copper(II) complexes [Cu(2)((R)()PEA)(2)](ClO(4))(2) and [Cu(2)((S)()PEA)(2)](ClO(4))(2) in a 1:1 ratio. The phenomenon of molecular self-recognition is also observed when a racemic mixture of the monomeric copper(II) complex [Cu((R(S))()PEA)(Cl)(H(2)O)] is converted into the homochiral dimeric species [Cu(2)((R(S))()PEA)(2)](ClO(4))(2) via reaction with Ag(+) ion. This is the first report of direct conversion of a racemic mixture of a chiral monomeric copper(II) complex to a mixture of the homochiral dimers.  相似文献   

8.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

9.
The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).  相似文献   

10.
Two new polynuclear complexes [Ni6(amox)6(mu6-O)(mu3-OH)2](Cl2).6H2O and [Cu3(amox)3(mu3-OH)(mu3-Cl)](ClO4).4H2O (amox- = anion of 4-amino-4-methyl-2-pentanone oxime) have been synthesized and characterized structurally and magnetically. The Ni(II) complex contains a novel Chinese-lantern-like Ni6 cage centered by an oxo ion. It contains the nearest octahedral Ni(II)...Ni(II) separation (<2.8 A) and exhibits strong antiferromagnetic properties. The Cu(II) complex has a cyclic trinuclear copper(II) core bridged by both mu3-OH(-) and mu3-Cl(-) ions. The magnetic susceptibilities of both antiferromagnetic complexes were fitted by using approximate models.  相似文献   

11.
The novel tetrahedral [Bi(5)(dpd)(6) within CH(3)CN](ClO(4))(3).3CH(3)CN (dpd = di-2-pyridyl-gem-diolate) has been synthesized from [Bi(9)(mu(3)-O)(8)(mu(3)-OH)(6)](ClO(4))(5) and di-2-pyridyl ketone. The Bi(5) complex incorporates CH(3)CN via C-HO hydrogen bonding.  相似文献   

12.
Four mixed-ligand copper(II) complexes containing the rigid bidentate nitrogen ligand bis[N-(p-tolyl)imino]acenaphthene (abb. p-Tol-BIAN) ligand are reported. These complexes, namely [Cu(p-Tol-BIAN)(2)](ClO(4))(2)1, [Cu(p-Tol-BIAN)(acac)](ClO(4)) 2, [Cu(p-Tol-BIAN)Cl(2)] 3 and [Cu(p-Tol-BIAN)(AcOH)(2)](ClO(4))(2)4 (where acac, acetylacetonate and AcOH, acetic acid) have been prepared and characterized by elemental analysis, spectroscopic, magnetic and molar conductance measurements. ESR spectra suggest a square planar geometry for complexes 1 and 2. In complexes 3 and 4, a distorted tetrahedral arrangement around copper(II) centre was suggested. Solvatochromic behavior of all studied complexes indicates strong solvatochromism of their solutions. The observed solvatochromism is mainly due to the solute-solvent interaction between the chelate cation and the solvent molecules. Thermal properties and decomposition kinetics of all complexes are investigated. The kinetic parameters (E, A, Delta H, Delta S and Delta G) of all thermal decomposition stages have been calculated using the Coats-Redfern and other standard equations.  相似文献   

13.
A new end-on (EO) azido-bridged tetranuclear copper(II) complex [Cu(4)L(2)(mu(1,1)-N(3))(2)].5H(2)O derived from the ligand H(3)L (N,N'-(2-hydroxylpropane-1,3-diyl)bis-salicylideneimine) has been synthesized. Its X-ray structure shows an unusual Cu(4)O(2)N(2) open cubane core in which four copper(II) atoms are connected two by two through two mu(1,1)-azido species and three by three through two alkoxo bridges. The magnetic susceptibility data is dominated by strong antiferromagnetic interactions associated with the alkoxides and weak ferromagnetic interactions arising from the azides, in agreement with magneto-structural correlations found in the literature relative to such bridges in Cu(II) complexes.  相似文献   

14.
The initial use of pyridine-2,6-diamidoxime (pdamoH(2)) in metal cluster and polymer chemistry is described. Depending on the reaction conditions employed, the Cu(ClO(4))(2)·6H(2)O/pdamoH(2) system has provided access to the dinuclear compound [Cu(2)(pdamoH)(2)(ClO(4))(2)(MeOH)(2)] (1), the chain-like polymer [Cu(2)(pdamoH)(2)](n)(ClO(4))(2n) (2) and to the tetranuclear cluster [Cu(4)(pdamo)(2)(pdamoH)(2)](ClO(4))(2) (3). Single-crystal, X-ray crystallography reveals different coordination modes for the pdamoH(-) ligand in each compound, providing the first evidence for the flexibility and versatility of the anionic forms of pdamoH(2). Variable-temperature magnetic susceptibility studies indicate very strong antiferromagnetic coupling in the three complexes, attributable to the double oximato bridges which link the Cu(II) spin carriers.  相似文献   

15.
The bis-pyridine tridentate ligands (6-R-2-pyridylmethyl)-(2-pyridylmethyl) benzylamine (RDPMA, where R = CH(3), CF(3)), (6-R-2-pyridylmethyl)-(2-pyridylethyl) benzylamine (RPMPEA, where R = CH(3), CF(3)), and the bidentate ligand di-benzyl-(6-methyl-2-pyridylmethyl)amine (BiBzMePMA) have been synthesized and their copper(I) complexes oxidized in a methanol solution to afford self-assembled bis-micro-methoxo-binuclear copper(II) complexes (1, 2, 4, 6) or hydroxo- binuclear copper(II) complexes (3). Oxidation of the nonsubstituted DPMA (R = H) in dichloromethane gives a chloride-bridged complex (5). The crystal structures for [Cu(MeDPMA)(MeO)](2)(ClO(4))(2) (1), [Cu(RPMPEA)(MeO)](2)(ClO(4))(2) (for 2, R= Me, and for 4, R = CF(3)), [Cu(BiBzMePMA)(MeO)](2)(ClO(4))(2) (6), [Cu(FDPMA)(OH)](2)(ClO(4))(2) (3), and [Cu(DPMA)(Cl)](2)(ClO(4))(2) (5) have been determined, and their variable-temperature magnetic susceptibility has been measured in the temperature range of 10-300 K. The copper coordination geometries are best described as square pyramidal, except for 6, which is square planar, because of the lack of one pyridine ring in the bidentate ligand. In 1-4 and 6, the basal plane is formed by two pyridine N atoms and two O atoms from the bridging methoxo or hydroxo groups, whereas in 5, the bridging Cl atoms occupy axial-equatorial sites. Magnetic susceptibility measurements show that the Cu atoms are strongly coupled antiferromagnetically in the bis-methoxo complexes 1, 2, 4, and 6, with -2J > 600 cm(-)(1), whereas for the hydroxo complex 3, -2J = 195 cm(-)(1) and the chloride-bridged complex 5 shows a weak ferromagnetic coupling, with 2J = 21 cm(-)(1) (2J is an indicator of the magnetic interaction between the Cu centers).  相似文献   

16.
Bu XH  Liu H  Du M  Zhang L  Guo YM  Shionoya M  Ribas J 《Inorganic chemistry》2002,41(7):1855-1861
The reactions of 3,6-di-2-pyridyl-1,2,4,5-tetrazine (DPTZ) with different Cu(II) salts generate two new ligands, 2,5-bis(2-pyridyl)-1,3,4-oxodiazole (L(1)) and N,N'-bis(alpha-hydroxyl-2-pyridyl)ketazine (H(2)L(2)), from the metal-assisted hydrolysis of DPTZ, and form three new complexes: a mononuclear complex [Cu(L(1))(2)(H(2)O)(2)] .2ClO(4) (1), a linear coordination polymer [Cu(L(1))(NO(3))(2)](8) (2), and a cyclic tetranuclear complex [Cu(4)(L(2))(2)(Im)(2)(NO(3))(4)(H(2)O)(2)] (3) (Im = imidazole). Crystal data for 1: space group P2(1)/n with a = 10.339(3) A, b = 10.974(2) A, c = 13.618(4) A, beta = 103.24(1) degrees, and Z = 2. Crystal data for 2: space group C2/c with a = 13.9299(14) A, b = 9.2275(9) A, c = 12.1865(13) A, beta = 111.248(2) degrees, and Z = 4. Crystal data for 3: space group P2(1)/n with a = 9.3422(14) A, b = 15.987(2) A, c = 13.963(2) A, beta = 108.587(3) degrees, and Z = 2. L(1) acts as a bidentate chelating ligand in 1 and as a bis-bidentate chelating ligand in 2 with the shortest intramolecular Cu...Cu distance of 6.093 A. L(2) is a hexadentate ligand to bridge four Cu(II) ions, forming an interesting neutral cyclic tetranuclear complex 3 with Cu...Cu distances varying from 4.484 to 9.370 A. The mechanism of the metal assisted hydrolysis of DPTZ is discussed in detail. Magnetic susceptibility measurements indicate that 2 shows weak ferromagnetic interaction (J = 2.85 cm(-1)) along the 1-D helical chain, and that 3 displays weak antiferromagnetic interaction (J = -1.19 cm(-1) for the N-N bridge) and ferromagnetic interaction (j = 0.11 cm(-1) for the O-C=N bridge) between the adjacent Cu(II) ions.  相似文献   

17.
The reaction of dinuclear copper(II) cryptates with calcium cyanamide, CaNCN, and sodium dicyanamide, Na[N(CN)(2)] results in dinuclear compounds of formulae [Cu(2)(HNCN)(R3Bm)](ClO(4))(3) (1), [Cu(2)(dca)(R3Bm)](ClO(4))(3)4H(2)O (2), and [Cu(2)(NCNCONH(2))(R3Bm)](CF(3)SO(3))(3) (3), in which R3Bm=N[(CH(2))(2)NHCH(2)(C(6)H(4)-m)CH(2)NH(CH(2))(2)](3)N and dca=dicyanamido ligand (NCNCN(-)). The X-ray diffraction analysis reveals for both 1 and 3 a dinuclear entity in which the copper atoms are bridged by means of the -NCN- unit. The molar magnetic susceptibility measurements of 1-3 in the 2-300 K range indicate ferromagnetic coupling. The calculated J values, by using theoretical methods based on density functional theory (DFT) are in excellent agreement with the experimental data. Catalytic hydration of a nitrile to an amide functional group is assumed responsible for the formation of 3 from a mu(1,3)-dicyanamido ligand.  相似文献   

18.
The reaction of cyclohexylphosphonic acid (C(6)H(11)PO(3)H(2)), anhydrous CuCl(2) and 2,2'-bipyridine (bpy) in the presence of triethylamine followed by a metathesis reaction with KNO(3) afforded [Cu(4)(mu-Cl)(2)(mu(3)-C(6)H(11)PO(3))(2)(bpy)(4)](NO(3))(2) (1). In an analogous reaction involving Cu(OAc)(2).H(2)O, the complex [Cu(4)(mu-CH(3)COO)(2)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4)](CH(3)COO)(2) (2) has been isolated. The three-component reaction involving Cu(NO(3))(2).3H(2)O, cyclohexylphosphonic acid and 2,2'-bipyridine in the presence of triethylamine afforded the tetranuclear assembly [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4) (H(2)O)(2)](NO(3))(3) (3). Replacing 2,2'-bipyridine with 1,10-phenanthroline (phen) in the above reaction resulted in [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(phen)(4)(H(2)O)(2)](NO(3))(3) (4). In all the copper(II) phosphonates (1-4) the two phosphonate ions bridge the four copper(II) ions in a capping coordination action. Each phosphonate ion bridges four copper(II) ions in a mu(4), eta(3) coordination mode or 4.211 of the Harris notation. Variable-temperature magnetic studies on reveal that all four complexes exhibit moderately strong intramolecular antiferromagnetic coupling. The DNA cleavage activity of complexes 1-4 is also described. Compounds 1 and 3 were able to completely convert the supercoiled pBR322 DNA form I to nick form II without any co-oxidant. In contrast, 50% conversion occurred with and 40% with 4. In the presence of magnesium monoperoxyphthalate all four compounds achieved rapid conversion of form I to form II.  相似文献   

19.
Mondal A  Li Y  Khan MA  Ross JH  Houser RP 《Inorganic chemistry》2004,43(22):7075-7082
The self-assembly of supramolecular copper "tennis balls" that possess unusual magnetic properties using a small pyridyl amide ligand is described. Copper(II) complexes of N-(2-pyridylmethyl)acetamide (HL) were synthesized in methanol. In the absence of base, the mononuclear complex [Cu(HL)(2)](ClO(4))(2) (1) was prepared. The structure of 1, determined by X-ray crystallography, contains a copper(II) ion surrounded by bidentate HL ligands coordinated via the pyridyl N atom and the carbonyl O atom in a trans, square planar arrangement. Reactions carried out in the presence of triethylamine resulted in cluster complexes [Cu(8)L(8)(OH)(4)](ClO(4))(4) and [Cu(8)L(8)(OH)(4)](CF(3)SO(3))(4) [2(ClO(4))(4) and 2(OTf)(4), respectively]. The cationic portions of 2(ClO(4))(4) and 2(OTf)(4) are isostructural, containing eight copper(II) ions, eight deprotonated ligands (L(-)), and four mu(3)-hydroxide ligands. The top and bottom halves of the cluster are related by a pseudo-S(4) symmetry operation and are held together by bridging L(-) ligands. Solutions of 2(ClO(4))(4) and 2(OTf)(4), which were shown to contain the full [Cu(8)L(8)(OH)(4)](4+) fragment by electrospray mass spectrometry and conductance experiments, are EPR silent. Magnetic susceptibility measurements for 2(ClO(4))(4) as a function of temperature and magnetic field showed the Cu ions all to exhibit magnetic moments in the range expected for the d(9) configuration. At low temperatures, the magnetization was reduced due to predominantly antiferromagnetic interactions between ions. Analysis showed that partially frustrated interactions among the four Cu ions making up each half of the cluster gave good agreement with the data once a large molecular anisotropy was taken into account, with J(c) = 106 cm(-1), D = 27 cm(-1), and g = 2.17.  相似文献   

20.
Das O  Paria S  Zangrando E  Paine TK 《Inorganic chemistry》2011,50(22):11375-11383
The mononuclear copper(II) complex [Cu(H(2)L(1))(2)(H(2)O)](ClO(4))(2) (1) (where H(2)L(1) = 1,10-phenanthroline-5,6-dioxime) reacts with copper(II) perchlorate in acetonitrile at ambient conditions in the presence of triethylamine to afford a copper(II) complex, [Cu(L(3))(2)(H(2)O)](ClO(4))(2) (2a), of 1,10-phenanthroline furoxan. A similar complex [Cu(L(3))(2)Cl](ClO(4)) (2) is isolated from the reaction of H(2)L(1) with copper(II) chloride, triethylamine, and sodium perchlorate in acetonitrile. The two-electron oxidation of the vic-dioxime to furoxan is confirmed from the X-ray single crystal structure of 2. An intermediate species, showing an absorption band at 608 nm, is observed at -20 °C during the conversion of 1 to 2a. A similar blue intermediate is formed during the reaction of [Cu(HDMG)(2)] (H(2)DMG = dimethylglyoxime) with ceric ammonium nitrate, but H(2)DMG treated with ceric ammonium nitrate does not form any intermediate. This suggests the involvement of a copper(II) complex in the intermediate step. The intermediate species is also observed during the two-electron oxidation of other vic-dioximes. On the basis of the spectroscopic evidence and the nature of the final products, the intermediate is proposed to be a mononuclear copper(II) complex ligated by a vic-dioxime and a dinitrosoalkene. The dinitrosoalkene is generated upon two-electron oxidation of the dioxime. The transient blue color of the dioxime-copper(II)-dinitrosoalkene complex may be attributed to the ligand-to-ligand charge transfer transition. The intermediate species slowly decays to the corresponding two-electron oxidized form of vic-dioxime, i.e. furoxan and [Cu(CH(3)CN)(4)](ClO(4)). The formation of two isomeric furoxans derived from the reaction of an asymmetric vic-dioxime, hexane-2,3-dioxime, and copper(II) perchlorate supports the involvement of a dinitrosoalkene species in the intermediate step. In addition, the oxidation of 2,9-dimethyl-1,10-phenanthroline-5,6-dioxime (H(2)L(2)) to the corresponding furoxan and subsequent formation of a copper(I) complex [Cu(L(4))(2)](ClO(4)) (3) (where L(4) = 2,9-dimethyl-1,10-phenanthroline furoxan) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号