首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanostructuring of the surface of specimens during friction is investigated under the conditions of shear instability of the subsurface layers of the material due to the strong localization of deformation. It is demonstrated that the localization of deformation in the subsurface layers occurs in three stages. The structure of the localization zone is studied. The formation of a nanocrystalline material on the surface due to the shear instability is considered by analogy with the formation of the shear band. The formation of the nanocrystalline material can be responsible for the crossover from the mild wear to the adhesive wear in the absence of mechanisms providing structural adaptability.  相似文献   

2.
The influence of C60 additive in industrial oil on the structure of the friction surface of copper foil in a steel-copper sliding friction pair is investigated by wide-angle x-ray diffraction, scanning electron microscopy, and hardness testing. The presence of C60 in the lubricant leads to the formation of a thin film (of thickness <1000 Å) on the friction surface of the copper, where it protects the surface layers of the latter against major structural changes and helps to improve the tribological characteristics.  相似文献   

3.
A comprehensive structural study has been performed to explore deformation and wear debris formation on friction surfaces of metallic materials. A hierarchy of structural scales of plastic deformation and failure during wear has been established. The nanoscale plays the major role in the hierarchical self-organization of multiscale debris formation processes. On this scale, bifurcational interstitial states arise in zones of local lattice curvature, with plastic distortion and motion of nonequilibrium point defects which determine the nonlinear dynamics of structure formation and wear of surface layers. Nonequilibrium vacancies on lattice sites form microporosity through the coalescence mechanism under plastic distortion. The microporosity is a precursor of meso- and macroscale plastic shearing that defines wear debris formation.  相似文献   

4.
The formation of nanocrystal -martensite structures (NCS) in the surface layers of carbon and alloy steels under conditions of sliding friction and abrasion is investigated by electron microscopic, x-ray, and metallographic methods. The influence of the dynamic strain aging of martensite and strain dissolution of the carbide phase on the strength (microhardness and shear resistance) and tribological properties (wear resistance and friction coefficient) of nanocrystal surface layers of steels with martensitic base is demonstrated. The role of nanocrystal martensite in adhesive, abrasive, and fatigue wear resistance of steels is examined. The negative influence of the oxidizing air environment on the effective strength and wear resistance of friction NCS is demonstrated. The increased resistance of friction NCS of high-carbon steel to softening after tempering and friction heating is established.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 65–80, August, 2004.  相似文献   

5.
Conclusions When steel parts are working under heavy-duty conditions, there is always a possibility of the formation of carbides on their rubbing surfaces as a result of decomposition of lubricants and subsequent reaction of carbon with the metal. This process is inevitably associated with local seizing and mutual material transfer. As a result, the carbide phase formed during friction betwen two steels of a different composition may differ from the adjacent material in respect to its content of carbide-forming elements. When strong carbide-forming elements are present in a steel with a friction-induced surface carbide layer, heating such a steel to relatively low temperatures leads to localized decarburization which, under certain circumstances, may reduce the wear resistance of steel. In a simple case of a binary alloy, the rate of decarburization depends on the affinity of the alloying element to carbon.When this affinity in high, the decarburization rate may be slow because of a reduced intensity of the diffusion flux (due to reduced solubility and diffusion coefficients, and because of carbide formation in the contact zone), while elements with a lower affinity to carbon produce a more intense decarburization.The above considerations do not apply to high-alloy steels in which the extent of carbide-forming elements is so high that practically all the carbon diffusing to the contact interface combines with these elements to form carbides. In this case the reduction in the coefficient of diffusion of carbon in steel does not play any substantial part because its diffusion path is relatively short. It is to be expected that in this case the decarburization rate will increase with increasing tendency of the alloying elements to carbide formation.It should be pointed out that the dissolution of surface carbide layers takes place also in cases when the carbide layers are produced as a result of friction between similar alloy steels because a large proportion of the carbide-forming elements is dissolved in ferrite (i.e., is not combined in carbides), while the carbide layers contain large quantities of cementite. This means that the decarburization rate is determined in the first place by the chemical composition of the steel and not of the carbide layer.Facts reported in this article will assist, when necessary, in a rational selection of the friction pair components with a view to reducing or eliminating the decarburization of the surface layers. Needless to say, experimental studies (using the above described methods) will have to be carried out in each specific case. It is also evident that data of this kind are not sufficient to make recommendations about selecting materials for any given friction pair, since all the other factors determining the wear resistance must be taken into account.  相似文献   

6.
Triboluminescence is used to study the microcrack formation during dry sliding friction on steel of polyphenylene sulfide (PPS) and a composite material consisting of a PPS matrix reinforced with a carbon fiber fabric. It is found that, when fabric layers are parallel to the slip plane, the number and linear sizes of microcracks are larger than those in PPS. In contrast, when fabric layers are normal to the slip plane, the number and linear sizes of microcracks are smaller than those in PPS. These effects are explained by the formation of boundary layers in the matrix in which molecules are oriented parallel to the axis of fibers in the fabric.  相似文献   

7.
用一维Frenkel-Kontorova模型,对相互接触的两个单原子分子链具有相对运动趋势时所产生的最大静摩擦力进行了研究.分别在相邻原子的距离与周期势场的周期比b/a为可公度(commensurate)、黄金分割(golden mean)、螺旋分割(spiral mean)三种情况下,描述了特殊垫底势力的振幅A与分子链静摩擦力的关系,在特殊垫底势力的作用下上层原子链弹性系数K对静摩擦力的影响.研究表明,垫底势力的形式对静摩擦力的大小有很重要的影响. 关键词: Frenkel-Kontorova模型 静摩擦力  相似文献   

8.
用一维Frenkel-Kontorova模型,对相互接触的两个单原子分子链具有相对运动趋势时所产生的最大静摩擦力进行了研究.分别在相邻原子的距离与周期势场的周期比b/a为可公度(commensurate)、黄金分割(golden mean)、螺旋分割(spiral mean)三种情况下,描述了特殊垫底势力的振幅A与分子链静摩擦力的关系,在特殊垫底势力的作用下上层原子链弹性系数K对静摩擦力的影响.研究表明,垫底势力的形式对静摩擦力的大小有很重要的影响.  相似文献   

9.
Numerical and experimental studies have been undertaken to analyze three parameters controlling the compaction of granular media submitted to sinusoidal horizontal vibrations. We have characterized the influence of the dimensionless acceleration Γ, the geometry of the container and the friction coefficients on the grain velocities and on the packing densities. Above a critical acceleration Γ, the velocities increases with Γ. For low values of Γ, the surface layers are compacted, whereas the bottom layers remain at their initial density. For high values of Γ, the bottom layers get compacted, the surface layers are fluidized so that the bulk dynamic and relaxed densities decreased. In the same way, the effect of the dimensions of the container and of the friction coefficients on the packing properties has been studied for given heights of sand, acceleration and frequency. It has been shown that the influence of the two last parameters is similar to that of acceleration. The numerical results given by the Discrete Element Method appear to be in good agreement with experimental results.  相似文献   

10.
The problem of defect formation in the GaAs and InGaAs layers grown by low-temperature molecular-beam epitaxy is discussed. The effect of growth conditions (temperature and flux ratio between the elements of groups III and V) on the morphology of growth surface, internal structure, type, and concentration of electrically-and optically active defects is analyzed. A comparison is made between the defect formation processes occuring during the epitaxial growth and post-growth annealing of the layers. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 63–72, December, 2006.  相似文献   

11.
Segregation manifestations of the long-range effect during the irradiation of rolled nonequilibrium Cu80Ni20 alloy foils with B+ ions are studied. The composition separation of Cu and Ni in the surface layers of the unirradiated side of the foil is revealed. This separation leads to the formation of the nonmonotonic concentration profiles of Ni and Cu. A phenomenological model for the formation of the chemical composition of the surface layers on the unirradiated side of the foil is proposed. It is based on the assumption of the simultaneous effects of the generation of elastic waves and changes in local mechanical stresses.  相似文献   

12.
Superlubricity of graphite   总被引:1,自引:0,他引:1  
Using a home-built frictional force microscope that is able to detect forces in three dimensions with a lateral force resolution down to 15 pN, we have studied the energy dissipation between a tungsten tip sliding over a graphite surface in dry contact. By measuring atomic-scale friction as a function of the rotational angle between two contacting bodies, we show that the origin of the ultralow friction of graphite lies in the incommensurability between rotated graphite layers, an effect proposed under the name of "superlubricity" [Phys. Rev. B 41, 11 837 (1990)]].  相似文献   

13.
Transfer behaviors of molded polytetrafluoroethylene (PTFE) blocks embedded in metal substrates were studied using a DFPM reciprocating tribometer under designed conditions. The substrate properties markedly affected the embedded PTFE transfer behaviors. For instance, the surface friction coefficient when embedded in AISI-1045 steel had evident fluctuations even after 1000 cycles although the friction coefficient decreased with the increase of the sliding cycles. On the other hand, the friction coefficient when the PTFE was embedded in 2024Al was remarkably reduced during the first 200 cycles, reaching a low and stable state. The loads played different roles in the transfer process; a higher load was advantageous for the steel-PTFE embedded composites, but it resulted in the opposite result for the Al-PTFE embedded composites. The motion direction of the GCr15 tribometer steel ball had no remarkable effect on the transfer behaviors. The worn surface of the substrates and the steel ball were observed and analyzed using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results indicate that the efficiency of second transfer film formation on the 2024Al substrate was better than for the AISI-1045 steel. The adhesion properties of Al enhanced the mechanical transfer of PTFE during the friction process.  相似文献   

14.
The effect of nitrogen ion implantation with an energy of 125 keV and doses of 1 × 1017–1 × 1018 at/cm2 on such tribological characteristics of AISI316L stainless steel as the friction coefficient, wear resistance, and microhardness was studied. The steel surface layer composition was studied by the methods of RBS, XRD, GXRD, SEM, and EDX. The friction coefficient and abrasion resistance of AISI316L stainless steel were measured in air, oxygen and argon atmospheres, and in vacuum. An increase in the abrasion resistance after implantation was detected, which was different for various media. The largest increase in the wear resistance was observed during testing in air. The largest decrease in the friction coefficient was observed for all implanted samples in argon atmosphere. Tribological tests resulted in an increase in nitrogen, carbon, and oxygen concentrations in worn sample fragments in comparison with their concentrations in surface layers immediately after implantation.  相似文献   

15.
16.
17.
The distribution profiles of the dopant in the surface layer of a SiO2/Si structure implanted with Zn and O ions are studied via Rutherford backscattering spectroscopy for He2+ ions using the channeling technique. The redistribution of implanted impurities in the Si surface layer during the formation process of zinc oxide (ZnO) nanoparticles is analyzed. The effect of the annealing temperature on the formation process and growth of ZnO nanoparticles is studied. The sample-surface morphology is examined via atomic force microscopy. The optical absorption and photoluminescence of the implanted layers are studied.  相似文献   

18.
在Ga-HCl-NH3-Ar系统中,做了多种生长参量变化对GaN晶体形貌影响的规律实验。结果表明,在其它生长条件固定的情况下,HCl的流量在15.8~21ml/min的范围内时,GaN晶体表面的生长坑大小与深度随HCl流量的增加而增大,反之则减小。而当HCl流量小于15.8ml/min时,生长的GaN膜逐渐成为多坑与多晶状。当大于21ml/min时,GaN膜的表面则逐渐出现丘锥体及多晶。经霍耳测量,样片的电子迁移率平均在116cm2/V·s左右,最高的可达462cm2/V·s。在HCl流量15.8~21ml/min的范围内,能重复生长出理想的n-GaN。  相似文献   

19.
The effect of the amorphous thin layer on the surface growth of amorphous/crystalline binary multilayer films has been studied by using a continuum model. It is shown that both the surface roughness and the growth exponent of amorphous/crystalline binary multilayer films decrease with increasing thickness ratio between amorphous and crystalline layers. Our simulations have also revealed, in contrast to the monotonous rise in surface roughness observed in single-layer films grown on flat substrates, the surface growth of a multilayer film consists of two processes: interface smoothing and roughening, namely the film roughness decreases during the growth of amorphous thin layers but increases monotonously during the growth of crystalline thin layers. The observed interface smoothing and roughening can be obviously influenced by the change in the thickness ratio between amorphous and crystalline layers. The rise in thickness ratio between amorphous and crystalline layers enhances the interface smoothing effect but lowers the interface roughening effect and consequently shows a marked smoothing effect on the surface roughness.  相似文献   

20.
Numerical and experimental studies have been undertaken to analyze three parameters controlling the compaction of granular media submitted to sinusoidal horizontal vibrations. We have characterized the influence of the dimensionless acceleration G \Gamma , the geometry of the container and the friction coefficients on the grain velocities and on the packing densities. Above a critical acceleration Gcrit \Gamma_{{\rm crit}}^{} , the velocities increases with G \Gamma . For low values of G \Gamma , the surface layers are compacted, whereas the bottom layers remain at their initial density. For high values of G \Gamma , the bottom layers get compacted, the surface layers are fluidized so that the bulk dynamic and relaxed densities decreased. In the same way, the effect of the dimensions of the container and of the friction coefficients on the packing properties has been studied for given heights of sand, acceleration and frequency. It has been shown that the influence of the two last parameters is similar to that of acceleration. The numerical results given by the Discrete Element Method appear to be in good agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号