首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method developed by Debiane and Kharif for the calculation of symmetric gravity-capillary waves on infinite depth is extended to the general case of non-symmetric solutions. We have calculated non-symmetric steady periodic gravity-capillary waves on deep water. It is found that they appear via bifurcations from a family of symmetric waves. On the other hand we found that the symmetry-breaking bifurcation of periodic steady class 1 gravity wave on deep water is possible when it approaches the limiting profile, if it is very weakly influenced by surface tension effects. To cite this article: R. Aider, M. Debiane, C. R. Mecanique 332 (2004).  相似文献   

2.
Water waves in an elastic vessel   总被引:2,自引:0,他引:2  
Linear and nonlinear analyses of water waves in an elastic vessel are carried out to study the dramatic phenomena of Dragon Wash as well as related controllable experiments. It is proposed that the capillary edge waves are generated by parametric resonance, which is shown to be a possible mechanism for both rectangular an circular vessels. For circular vessel, the normal geometric resonance is also operating, thus greatly enhance the dramatic effect. The mechanism of nonlinear mode-mode interaction is proposed for the generation of axisymmetric low-frequency gravity waves by the high- frequency external excitation. A simple model system is studied numerically to demonstrate explicitly this interaction mechanism.  相似文献   

3.
In the regime of weakly transverse long waves, given long-wave initial data, we prove that a non-dimensionalized water wave system in an infinite strip under the influence of gravity and surface tension on the upper free interface has a unique solution on [0, T/ e{0, T/ \varepsilon} ] for some e{\varepsilon} independent of constant T. We shall prove in the subsequent paper (Ming et al., The long wave approximation to the three-dimensional capillary gravity waves, 2011) that on the same time interval, these solutions can be accurately approximated by sums of solutions of two decoupled Kadomtsev–Petviashvili (KP) equations.  相似文献   

4.
Theory of water waves in an elastic vessel   总被引:3,自引:0,他引:3  
Recent experiments related to the Dragon Wash phenomena showed that axisymmetric capillary waves appear first from excitation, and circumferential capillary waves appear after increase of the excitation strength. Based on this new finding, a theory of parametric resonance is developed in detail to explain the on-set of the prominent circumferential capillary waves. Numerical computation is also carried out and the results agree generally with the experiments. Analysis and numerical computation are also presented to explain the generation of axisymmetric low-frequency gravity waves by the high-frequency external excitation.  相似文献   

5.
The goal of this study is to evaluate the effect of mass lumping on the dispersion properties of four finite‐element velocity/surface‐elevation pairs that are used to approximate the linear shallow‐water equations. For each pair, the dispersion relation, obtained using the mass lumping technique, is computed and analysed for both gravity and Rossby waves. The dispersion relations are compared with those obtained for the consistent schemes (without lumping) and the continuous case. The P0?P1, RT0 and P?P1 pairs are shown to preserve good dispersive properties when the mass matrix is lumped. Test problems to simulate fast gravity and slow Rossby waves are in good agreement with the analytical results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d 1, and lower layer thickness d 2, instead of only one parameter–water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Méhauté’s plot for free surface waves if water depth ratio r = d 1/d 2 approaches to infinity and the upper layer water density ρ 1 to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of σ = (ρ 2ρ 1)/ρ 2 → 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves. The project supported by the Knowledge Innovation Project of CAS (KJCX-YW-L02), the National 863 Project of China (2006AA09A103-4), China National Oil Corporation in Beijing (CNOOC), and the National Natural Science Foundation of China (10672056).  相似文献   

7.
Nonlinear periodic gravity waves propagating at a constant velocity at the surface of a fluid of infinite depth are considered. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. It is known that there are both regular waves (for which all the crests are at the same height) and irregular waves (for which not all the crests are at the same height). We show numerically the existence of new branches of irregular waves which bifurcate from the branch of regular waves. Our results suggest there are an infinite number of such branches. In addition we found additional new branches of irregular waves which bifurcate from the previously calculated branches of irregular waves.  相似文献   

8.
We consider the motion of a rigid body with a single fixed point in a homogeneous gravity field. The body mass geometry and the initial conditions for its motion correspond to the case of Goryachev—Chaplygin integrability. We study the orbital stability problem for periodic motions corresponding to vibrations and rotations of the rigid body rotating about the equatorial axis of the inertia ellipsoid.In [1], it was proved that these periodic motions are orbitally unstable in the linear approximation. It was also shown that, to solve the stability problem in the nonlinear setting, it does not suffice to analyze terms up to the fourth order in the expansion of the Hamiltonian function in the canonical variables.The present paper shows that in this problem one deals with a special case where standard methods for stability analysis based on the coefficients in the normal form of the Hamiltonian of the perturbed equations of motion do not apply. We use Chetaev’s theorem to prove the orbital instability of these periodic motions in the rigorous nonlinear statement of the problem. The proof uses the additional first integral of the Goryachev—Chaplygin problem in an essential way.  相似文献   

9.
Unsteady convection in a fluid under weak gravity is modeled. Convection in a rectangular domain elongated in the direction of gravity and enclosed between two heat-conducting solids is investigated in the case of heat insulation of the ends of the rectangle and the periodic heat flow through the outer boundaries of the solids. In this case, the condition of zero total heat flux is satisfied. Convective fluid motions are described using two mathematical models: the classical Oberbeck-Boussinesq model and the microconvection model for an isothermally incompressible fluid. Results of the numerical studies confirm the quantitative and qualitative differences between the flow characteristics calculated using the two convection models. Fluid particle trajectories are presented. Effects due to various physical characteristics of the problem are studied.  相似文献   

10.
Rayleigh waves in a linear elastic couple-stress medium are investigated; the constitutive equations involve a length parameter l that characterizes the microstructure of the material. With , cT=conventional transversal speed and q=wave number, an explicit expression is derived for the relation between , lq and Poisson's ratio ν. The Rayleigh speed turns out to be dispersive and always larger than the conventional Rayleigh speed. It is of interest that when lq=1 and ν≥0, it always holds that . The displacement field is investigated and it is shown that no Rayleigh wave motions exist when lq→∞ and when lq=1, ν≥0. Moreover, a principal change of the displacement field occurs when lq passes unity. The peculiarity that no Rayleigh wave motions exist when lq=1, ν≥0 may support the criticism by Eringen (1968) against the couple-stress theory adopted here as well as in much recent literature.  相似文献   

11.
The paper presents a numerical study of the propagation of plane waves in a half-space occupied by a granular material, with periodic boundary conditions for velocity or stresses prescribed at the boundary of the half-space. The constitutive behaviour of the material is described by a simplified hypoplastic equation which takes into account different values of the stiffness for different directions of deformation, and the coupling between shear and volumetric strains owing to dilatancy. These two features are responsible for a nonlinear character of longitudinal waves and for the generation of longitudinal motion by transverse disturbances. It is shown that longitudinal and transverse boundary disturbances produce qualitatively the same longitudinal waves at large distances from the boundary. As a longitudinal wave propagates, the amplitude of oscillations decreases and eventually vanishes, resulting in a single non-oscillating wave.Received: 10 September 2002, Accepted: 31 March 2003 Correspondence to: Y. A. Berezin  相似文献   

12.
Steady periodic water waves on the free surface of an infinitely deep irrotational flow under gravity without surface tension (Stokes waves) can be described in terms of solutions of a quasi-linear equation which involves the Hilbert transform and which is the Euler-Lagrange equation of a simple functional. The unknowns are a 2π-periodic function w which gives the wave profile and the Froude number, a dimensionless parameter reflecting the wavelength when the wave speed is fixed (and vice versa). Although this equation is exact, it is quadratic (with no higher order terms) and the global structure of its solution set can be studied using elements of the theory of real analytic varieties and variational techniques. In this paper it is shown that there bifurcates from the first eigenvalue of the linearised problem a uniquely defined arc-wise connected set of solutions with prescribed minimal period which, although it is not necessarily maximal as a connected set of solutions and may possibly self-intersect, has a local real analytic parametrisation and contains a wave of greatest height in its closure (suitably defined). Moreover it contains infinitely many points which are either turning points or points where solutions with the prescribed minimal period bifurcate. (The numerical evidence is that only the former occurs, and this remains an open question.) It is also shown that there are infinitely many values of the Froude number at which Stokes waves, having a minimal wavelength that is an arbitrarily large integer multiple of the basic wavelength, bifurcate from the primary branch. These are the sub-harmonic bifurcations in the paper's title. (In 1925 Levi-Civita speculated that the minimal wavelength of a Stokes wave propagating with speed c did not exceed 2πc 2/g. This is disproved by our result on sub-harmonic bifurcation, since it shows that there are Stokes waves with bounded propagation speeds but arbitrarily large minimal wavelengths.) Although the work of Benjamin & Feir} and others [9, 10] has shown Stokes waves on deep water to be unstable, they retain a central place in theoretical hydrodynamics. The mathematical tools used to study them here are real analytic-function theory, spectral theory of periodic linear pseudo-differential operators and Morse theory, all combined with the deep influence of a paper by Plotnikov [36]. Accepted: December 6, 1999  相似文献   

13.
A third-order Lagrangian asymptotic solution is derived for gravity–capillary waves in water of finite depth. The explicit parametric solution gives the trajectory of a water particle and the wave kinematics for Lagrangian points above the mean water level, and in a water column. The water particle orbits and mass transport velocity as functions of the surface tension are obtained. Some remarkable trajectories may contain one or multiple sub-loops for steep waves and large surface tension. Overall, an increase in surface tension tends to increase the motions of surface particles including the relative horizontal distance travelled by a particle as well as the time-averaged drift velocity  相似文献   

14.
This paper studies nonlinear waves in a prestretched cylinder composed of a Blatz-Ko material. Starting from the three-dimensional field equations, two coupled PDEs for modeling weakly nonlinear long waves are derived by using the method of coupled series and asymptotic expansions. Comparing with some other existing models in literature, an important feature of these equations is that they are consistent with traction-free surface conditions asymptotically. Also, the material nonlinearity is kept to the third order. As these two PDEs are quite complicated, the attention is focused on traveling waves, for which a first-order system of ODEs are obtained. We use the technique of dynamical systems to carry out the analysis. It turns out that the system is three parameters (the prestretch, the propagating speed and an integration constant) dependent and there are totally seven types of phase planes which contain trajectories representing bounded traveling waves. The parametric conditions for each phase plane are established. A variety of solitary and periodic waves are found. An important finding is that kink waves can propagate in a Blatz-Ko cylinder. We also find that one type of periodic waves has an interesting feature in the profile slope. Analytical expressions for all bounded traveling waves are obtained.  相似文献   

15.
Experimental investigation of Faraday waves of maximum height   总被引:1,自引:0,他引:1  
The profiles of standing gravity waves of maximum height, parametrically excited on the free surface of a deep fluid in a vertically oscillating rectangular vessel (Faraday waves), are investigated experimentally. For a small modulation index of the excitation parameter, waves of three types are distinguished: regular, temporally periodic and symmetric about the vertical line passing through their crest; irregular but retaining the connectivity of the liquid volume; and breaking waves with drops separating from the free surface of the fluid. It is established that the profile of the maximum-height regular waves is smooth with a steepness of 0.255 and a limiting angle at the crest of less than 80°. Certain realizations of irregular and breaking waves, with profiles similar to those of regular waves but with much smaller steepnesses, 0288 and 0.429, respectively, are detected.  相似文献   

16.
17.
This paper presents a method for the calculation of steady periodic capillary-gravity waves on water of arbitrary uniform depth. The method developed by Debiane and Kharif in 1997 for infinite depth is extended to finite depth. The water-wave problem is reduced to a system of nonlinear algebraic equations which is solved using Newton's method. For the resonant configurations, the method does not suffer from the Wilton's failures and is valid for all depths. In addition, it is shown that the method allows the computation of solitary waves and generalized solitary waves.  相似文献   

18.
An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman–Thigpen–Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of “low frequency” underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g., seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.  相似文献   

19.
We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators.  相似文献   

20.
In the present paper, we study the propagation of acceleration and shock waves in a binary mixture of ideal Euler fluids, assuming that the difference between the atomic masses of the constituents is negligible. We evaluate the characteristic speeds, proving that they can be separated into two groups: one is related to the case of a single Euler fluid, provided that an average ratio of specific heats is introduced; the other is new and related to the propagation speed due to diffusion. We evaluate the critical time for sound acceleration waves and compare its value to that of a single fluid. We then study shock waves, showing that three types of shock waves appear: sonic and contact shocks, which have counterparts in the single fluid case, and the diffusive shock, which is peculiar to the mixture. We discuss the admissibility of the shock waves using the Lax-Liu conditions and the entropy growth criterion. It is proved that the sonic and the characteristic shock obey the same properties as in the single fluid case, while for the diffusive shock there exists a locally exceptional case that is determined by a particular value of the concentration of the constituents, for which the genuine nonlinearity is lost and no shocks are admissible. For other values of the unperturbed concentration, the diffusive shock is stable in a bounded interval of admissibility.Received: 15 December 2002, Accepted: 28 June 2003 Correspondence to: T. RuggeriS. Simi: On leave from the Department of Mechanics, Faculty of Technical Sciences, University of Novi Sad, Serbia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号