首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
On small scales spacetime can be understood as some kind of spacetime foam of fluctuating bubbles or loops which are expected to be an outcome of a theory of quantum gravity. One recently discussed model for this kind of spacetime fluctuations is the holographic principle which allows to deduce the structure of these fluctuations. We review and discuss two scenarios which rely on the holographic principle leading to holographic noise. One scenario leads to fluctuations of the spacetime metric affecting the dynamics of quantum systems: (i) an apparent violation of the equivalence principle, (ii) a modification of the spreading of wave packets, and (iii) a loss of quantum coherence. All these effects can be tested with cold atoms.  相似文献   

2.
Several aspects of the quantum fluctuations ofspacetime geometry are discussed. A model for lightconefluctuations is described in which a bath of gravitonsleads to metric fluctuations. The operational definitions of such phenomena as lightcone andhorizon fluctuations are examined. The problem ofdescribing fluctuations of a quantum stress tensor isalso discussed. The possibility that one can gain some insights about spacetime geometry fluctuationsfrom studies of the force fluctuations on materialbodies is suggested.  相似文献   

3.
It is found that the existence of spacetime foam leads to a situation in which the number of fundamental quantum bosonic fields is a variable quantity. The general aspects of an exact theory that allows for a variable number of fields are discussed, and the simplest observable effects generated by the foam are estimated. It is shown that in the absence of processes related to variations in the topology of space, the concept of an effective field can be reintroduced and standard field theory can be restored. However, in the complete theory the ground state is characterized by a nonvanishing particle number density. From the effective-field standpoint, such particles are “dark.” It is assumed that they comprise dark matter of the universe. The properties of this dark matter are discussed, and so is the possibility of measuring the quantum fluctuation in the field potentials. Zh. éksp. Teor. Fiz. 115, 1921–1934 (June 1999)  相似文献   

4.
The two-point function characterizing the stresstensor fluctuations of a massless, minimally coupledfield for an invariant vacuum state in de Sitterspacetime is discussed. This two-point function is explicitly computed for spacelike-separatedpoints which are geodesically connected. We show thatthese fluctuations are as important as the expectationvalue of the stress tensor itself. These quantum field fluctuations will induce fluctuations inthe geometry of de Sitter spacetime. This paper is afirst step toward the computation of such metricfluctuations, which may be of interest for large-scale structure formation in cosmology. The relevanceof our results in this context is brieflydiscussed.  相似文献   

5.
I propose an experiment that may be performed, with present low temperature and cryogenic technology, to reveal Wheeler’s quantum foam. It involves coupling an optical photon’s momentum to the center of mass motion of a macroscopic transparent block with parameters such that the latter is displaced in space by approximately a Planck length. I argue that such displacement is sensitive to quantum foam and will react back on the photon’s probability of transiting the block. This might allow determination of the precise scale at which quantum fluctuations of space–time become large, and so differentiate between the brane-world and the traditional scenarios of spacetime.  相似文献   

6.
The physics of the quantum stress tensor operator is discussed. Although theproblem of defining the expectation values of this operator is reasonably wellunderstood, the fluctuations around the mean value are not so well understood.It is shown that the stress tensor correlation function can be decomposed intothree parts, one of which is finite and state dependent, one which is infinite inthe coincidence limit but state independent, and a cross term which is both statedependent and infinite in the coincidence limit. Possible physical interpretationsof each part are discussed. The fluctuations of the stress tensor in turn inducefluctuations of the spacetime geometry. The terms in the correlation functionwhich are singular in the coincidence limit seem to produce drastic fluctuationsof the geometry, leading to a stochastic spacetime. Whether these fluctuationsare observable is an unanswered question.  相似文献   

7.
Because of quantum fluctuations, spacetime is probably "foamy" on very small scales. We propose to detect this texture of spacetime foam by looking for halo structures in the images of distant quasars. We find that the Very Large Telescope interferometer will be on the verge of being able to probe the fabric of spacetime when it reaches its design performance. Our method also allows us to use spacetime foam physics and physics of computation to infer the existence of dark energy or matter, independent of the evidence from recent cosmological observations.  相似文献   

8.
The operational meaning of spacetime fluctuations is discussed. Classical spacetime geometry can be viewed as encoding the relations between the motions of test particles in the geometry. By analogy, quantum fluctuations of spacetime geometry can be interpreted in terms of the fluctuations of these motions. Thus, one can give meaning to spacetime fluctuations in terms of observables which describe the Brownian motion of test particles. We will first discuss some electromagnetic analogies, where quantum fluctuations of the electromagnetic field induce Brownian motion of test particles. We next discuss several explicit examples of Brownian motion caused by a fluctuating gravitational field. These examples include lightcone fluctuations, variations in the flight times of photons through the fluctuating geometry, and fluctuations in the expansion parameter given by a Langevin version of the Raychaudhuri equation. The fluctuations in this parameter lead to variations in the luminosity of sources. Other phenomena that can be linked to spacetime fluctuations are spectral line broadening and angular blurring of distant sources.  相似文献   

9.
10.
I characterize good clocks, which are naturally subject to fluctuations, in statistical terms, obtain the master equation that governs the evolution of quantum systems according to these clocks, and find its general solution. This master equation is diffusive and produces loss of coherence. Moreover, real clocks can be described in terms of effective interactions that are nonlocal in time. Alternatively, they can be modeled by an effective thermal bath coupled to the system. I also study some aspects concerning the evolution of quantum low-energy fields in a foamlike spacetime, with involved topology at the Planck scale but with a smooth metric structure at large length scales. This foamlike structure of spacetime may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Spacetime foam introduces nonlocal interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. These evolution laws are similar to those for quantum mechanical systems evolving according to good nonideal clocks, although the underlying Hamiltonian structure in this case establishes some differences among both scenarios.  相似文献   

11.
We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable.  相似文献   

12.
The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features—such as Poincaré invariance and the existence of a preferred vacuum state—that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globally hyperbolic curved spacetimes, it is essential that the theory be formulated in an entirely local and covariant manner, without assuming the presence of a preferred state. We propose a new framework for quantum field theory, in which the existence of an Operator Product Expansion (OPE) is elevated to a fundamental status, and, in essence, all of the properties of the quantum field theory are determined by its OPE. We provide general axioms for the OPE coefficients of a quantum field theory. These include a local and covariance assumption (implying that the quantum field theory is constructed in a local and covariant manner from the spacetime metric and other background structure, such as time and space orientations), a microlocal spectrum condition, an “associativity” condition, and the requirement that the coefficient of the identity in the OPE of the product of a field with its adjoint have positive scaling degree. We prove curved spacetime versions of the spin-statistics theorem and the PCT theorem. Some potentially significant further implications of our new viewpoint on quantum field theory are discussed.  相似文献   

13.
The singularity theorems of classical general relativity are briefly reviewed. The extent to which their conclusions might still apply when quantum theory is taken into account is discussed. There are two distinct quantum loopholes: quantum violation of the classical energy conditions, and the presence of quantum fluctuations of the spacetime geometry. The possible significance of each is discussed.  相似文献   

14.
An approximate model of a spacetime foam is presented. It is supposed that in the spacetime foam each quantum handle is like to an electric dipole and therefore the spacetime foam is similar to a dielectric. If we neglect of linear sizes of the quantum handle then it can be described with an operator containing a Grassman number and either a scalar or a spinor field. For both fields the Lagrangian is presented. For the scalar field it is the dilaton gravity + electrodynamics and the dilaton field is a dielectric permeability. The spherically symmetric solution in this case give us the screening of a bare electric charge surrounded by a polarized spacetime foam and the energy of the electric field becomes finite one. In the case of the spinor field the spherically symmetric solution give us a ball of the polarized spacetime foam filled with the confined electric field. It is shown that the full energy of the electric field in the ball can be very big.  相似文献   

15.
The semiclassical theory of gravity is considered in which an asymptotically flat background metric is coupled to quantized matter. We show that, in general, there are modes with spacelike wave vectors for small metric fluctuations around flat spacetime. Besides the usual axioms of quantum field theory in flat spacetime, the proof rests on the existence of a hard trace anomaly in the energy-momentum tensor due to matter self-couplings. Two possible interpretations of the result are discussed.  相似文献   

16.
We analyze the quantum fluctuations of vacuum stress tensors and spacetime curvatures, using the framework of linear response theory which connects these fluctuations to dissipation mechanisms arising when stress tensors and spacetime metric are coupled. Vacuum fluctuations of spacetime curvatures are shown to be a sum of two contributions at lowest orders; the first one corresponds to vacuum gravitational waves and is restricted to light-like wavevectors and vanishing Einstein curvature, while the second one arises from gravity of vacuum stress tensors. From these fluctuations, we deduce noise spectra for geodesic deviations registered by probe fields which determine ultimate limits in length or time measurements. In particular, a relation between noise spectra characterizing spacetime fluctuations and the number of massless neutrino fields is obtained.  相似文献   

17.
A geometrical interpretation of Grassmannian anticommuting coordinates is given. They are taken to represent an indefiniteness inherent in every spacetime point on the level of the spacetime foam. This indeterminacy is connected with the fact that in quantum gravity in some approximation we do not know the following information: are two points connected by a quantum wormhole or not? It is shown that: (a) such indefiniteness can be represented by Grassmannian numbers, (b) a displacement of the wormhole mouth is connected with a change of the Grassmannian numbers (coordinates). In such an interpretation of supersymmetry the corresponding supersymmetrical fields must be described in an invariant manner on the background of the spacetimefoam.  相似文献   

18.
The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D=4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N=4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N=1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N=4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives.  相似文献   

19.
I take non-locality to be the Michelson–Morley experiment of the early 21st century, assume its universal validity, and try to derive its consequences. Spacetime, with its locality, cannot be fundamental, but must somehow be emergent from entangled coherent quantum variables and their behaviors. There are, then, two immediate consequences: (i). if we start with non-locality, we need not explain non-locality. We must instead explain an emergence of locality and spacetime. (ii). There can be no emergence of spacetime without matter. These propositions flatly contradict General Relativity, which is foundationally local, can be formulated without matter, and in which there is no “emergence” of spacetime. If these be true, then quantum gravity cannot be a minor alteration of General Relativity but must demand its deep reformulation. This will almost inevitably lead to: matter not only curves spacetime, but “creates” spacetime. We will see independent grounds for the assertion that matter both curves and creates spacetime that may invite a new union of quantum gravity and General Relativity. This quantum creation of spacetime consists of: (i) fully non-local entangled coherent quantum variables. (ii) The onset of locality via decoherence. (iii) A metric in Hilbert space among entangled quantum variables by the sub-additive von Neumann entropy between pairs of variables. (iv) Mapping from metric distances in Hilbert space to metric distances in classical spacetime by episodic actualization events. (v) Discrete spacetime is the relations among these discrete actualization events. (vi) “Now” is the shared moment of actualization of one among the entangled variables when the amplitudes of the remaining entangled variables change instantaneously. (vii) The discrete, successive, episodic, irreversible actualization events constitute a quantum arrow of time. (viii) The arrow of time history of these events is recorded in the very structure of the spacetime constructed. (ix) Actual Time is a succession of two or more actual events. The theory inevitably yields a UV cutoff of a new type. The cutoff is a phase transition between continuous spacetime before the transition and discontinuous spacetime beyond the phase transition. This quantum creation of spacetime modifies General Relativity and may account for Dark Energy, Dark Matter, and the possible elimination of the singularities of General Relativity. Relations to Causal Set Theory, faithful Lorentzian manifolds, and past and future light cones joined at “Actual Now” are discussed. Possible observational and experimental tests based on: (i). the existence of Sub- Planckian photons, (ii). knee and ankle discontinuities in the high-energy gamma ray spectrum, and (iii). possible experiments to detect a creation of spacetime in the Casimir system are discussed. A quantum actualization enhancement of repulsive Casimir effect would be anti-gravitational and of possible practical use. The ideas and concepts discussed here are not yet a theory, but at most the start of a framework that may be useful.  相似文献   

20.
陈骏  余洪伟 《中国物理快报》2004,21(12):2362-2364
The effects of quantum electromagnetic fluctuations upon the motion of a test charged particle are examined in a cylindrical spacetime in which one spatial is compactified. The mean squared fluctuations in the velocity and position of the test particle are calculated. It is found that the random motion of the test particle will be anisotropic. The possible consequences for theories with extra compactified spatial dimensions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号