首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new fully non‐hydrostatic model is presented by simulating three‐dimensional free surface flow on a vertical boundary‐fitted coordinate system. A projection method, known as pressure correction technique, is employed to solve the incompressible Euler equations. A new grid arrangement is proposed under a horizontal Cartesian grid framework and vertical boundary‐fitted coordinate system. The resulting model is relatively simple. Moreover, the discretized Poisson equation for pressure correction is symmetric and positive definite, and thus it can be solved effectively by the preconditioned conjugate gradient method. Several test cases of surface wave motion are used to demonstrate the capabilities and numerical stability of the model. Comparisons between numerical results and analytical or experimental data are presented. It is shown that the proposed model could accurately and effectively resolve the motion of short waves with only two layers, where wave shoaling, nonlinearity, dispersion, refraction, and diffraction phenomena occur. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Three numerical approaches for solving the incompressible Navier–Stokes equations in primitive variable form are proposed and compared in this work. All these approaches are based on the SIMPLE strategy with GDQ discretization on a non-staggered grid. It was found that the satisfying of the continuity equation on the boundary is critical to obtain an accurate numerical solution. The proposed three approaches are to make sure that the continuity equation is satisfied on the boundary, and in the meantime, recommend the boundary condition for pressure correction equation. Through a test problem of two-dimensional driven cavity flow, the performance of three approaches is comparatively studied in terms of the efficiency and accuracy. For all three approaches, accurate numerical results can be obtained by using just a few grid points.  相似文献   

3.
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the domain‐free discretization method (DFD) is extended to simulate the three‐dimensional compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior‐dependent points are updated at each time step by extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which the local DFD can be easily implemented for the three‐dimensional case. Geometry‐adaptive tetrahedral mesh is employed for three‐dimensional calculations. Finally, we validate the DFD method for three‐dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6 wing. Comparison with the reference experimental data and numerical results on boundary‐conforming grid was displayed and the results show that the present DFD results compare very well with the reference data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A novel numerical scheme for slug capturing in pipes using a 1‐dimensional transient hyperbolic 5‐equation 2‐fluid model is presented. Previous work has shown that 1‐dimensional 2‐fluid models are able to capture slug flow automatically. In this work, a similar approach is further developed using a new numerical scheme, applied to a hyperbolic 5‐equation 2‐fluid model. Starting from a finite volume discretisation of a 5‐equation 2‐fluid hyperbolic model and adding appropriate closure relations, a second‐order code is implemented and applied to air‐water flows in horizontal pipes, simulating the 2‐phase to 1‐phase flow process. The code is evaluated in some common standard test cases. A slug capturing application is also discussed. We show, in an air/water horizontal pipe, slug initiation, growth, and development. Moreover, a grid refinement analysis is performed showing that the method is grid independent and we show the code capability to take into account eventual surface tension effects, through the instantaneous pressure relaxation process. Finally, a prediction of flow regime transitions is shown and compared with a well‐known theoretical flow pattern map in addition to a preliminary comparison of computed slug characteristics against well‐known empirical correlations.  相似文献   

6.
A new vortex particle‐in‐cell (PIC) method is developed for the computation of three‐dimensional unsteady, incompressible viscous flow in an unbounded domain. The method combines the advantages of the Lagrangian particle methods for convection and the use of an Eulerian grid to compute the diffusion and vortex stretching. The velocity boundary conditions used in the method are of Dirichlet‐type, and can be calculated using the vorticity field on the grid by the Biot–Savart equation. The present results for the propagation speed of the single vortex ring are in good agreement with the Saffman's model. The applications of the method to the head‐on and head‐off collisions of the two vortex rings show good agreement with the experimental and numerical literature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The hydrostatic pressure assumption has been widely used in studying water movements in rivers, lakes, estuaries, and oceans. While this assumption is valid in many cases and has been successfully used in numerous studies, there are many cases where this assumption is questionable. This paper presents a three‐dimensional, hydrodynamic model for free‐surface flows without using the hydrostatic pressure assumption. The model includes two predictor–corrector steps. In the first predictor–corrector step, the model uses hydrostatic pressure at the previous time step as an initial estimate of the total pressure field at the new time step. Based on the estimated pressure field, an intermediate velocity field is calculated, which is then corrected by adding the non‐hydrostatic component of the pressure to the estimated pressure field. A Poisson equation for non‐hydrostatic pressure is solved before the second intermediate velocity field is calculated. The final velocity field is found after the free surface at the new time step is computed by solving a free‐surface correction equation. The numerical method was validated with several analytical solutions and laboratory experiments. Model results agree reasonably well with analytical solutions and laboratory results. Model simulations suggest that the numerical method presented is suitable for fully hydrodynamic simulations of three‐dimensional, free‐surface flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
A new numerical procedure for solving the two‐dimensional, steady, incompressible, viscous flow equations on a staggered Cartesian grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well‐established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity–pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation using the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results presented in this paper are based on first‐ and second‐order upwind schemes for the convective terms. This new formulation is validated against experimental and other numerical data for well‐known benchmark problems, namely developing laminar flow in a straight duct, flow over a backward‐facing step, and lid‐driven cavity flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports on the implementation and testing, within a full non‐linear multi‐grid environment, of a new pressure‐based algorithm for the prediction of multi‐fluid flow at all speeds. The algorithm is part of the mass conservation‐based algorithms (MCBA) group in which the pressure correction equation is derived from overall mass conservation. The performance of the new method is assessed by solving a series of two‐dimensional two‐fluid flow test problems varying from turbulent low Mach number to supersonic flows, and from very low to high fluid density ratios. Solutions are generated for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non‐linear multi‐grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to tackle the added non‐linearity of multi‐fluid flows, which is manifested through the performance jump observed when using the non‐linear multi‐grid approach as compared to the SG and PG methods; (ii) the extension of the FMG method to predict turbulent multi‐fluid flows at all speeds. The convergence history plots and CPU‐times presented indicate that the FMG method is far more efficient than the PG method and accelerates the convergence rate over the SG method, for the problems solved and the grids used, by a factor reaching a value as high as 15. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (RZ), and three‐dimensional (XYZ) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A higher‐order finite analytic scheme based on one‐dimensional finite analytic solutions is used to discretize three‐dimensional equations governing turbulent incompressible free surface flow. In order to preserve the accuracy of the numerical scheme, a new, finite analytic boundary condition is proposed for an accurate numerical solution of the partial differential equation. This condition has higher‐order accuracy. Thus, the same order of accuracy is used for the boundary. Boundary conditions were formulated and derived for fluid inflow, outflow, impermeable surfaces and symmetry planes. The derived boundary conditions are treated implicitly and updated with the solution of the problem. The basic idea for the derivation of boundary conditions was to use the discretized form of the governing equations for the fluid flow simplified on the boundaries and flow information. To illustrate the influence of the higher‐order effects at the boundaries, another, lower‐order finite analytic boundary condition, is suggested. The simulations are performed to demonstrate the validity of the present scheme and boundary conditions for a Wigley hull advancing in calm water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Pressure correction concept is widely used to solve incompressible Navier–Stokes problems numerically. Based on Krylov subspace methods, we introduce several new pressure correction algorithms. Compared with the traditional pressure correction methods, they do not need to solve the pressure Poisson equation, which appears to reduce the computational cost. The preconditioning technique links the pressure correction methods based on Krylov iterations and with the pressure Poisson equation. In order to investigate the convergence performance of the new methods, we carried out various numerical experiments. Moreover we also discuss some ways on computational cost. Finally, these pressure correction methods are applied to solve the three‐dimensional lid‐driven cavity flows. © Crown Copyright 2004. Reproduced with permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a new numerical method is developed for two‐dimensional interfacial (free surface) flows, based on the control volume method and conservative integral form of the Navier–Stokes equations with a standard staggered grid. The new method deploys two continuity equations, the continuity equation of the mass conservation for better convergence of the implicit scheme and the continuity equation of the volume conservation for the equation of pressure correction. The convection terms (the total momentum flux) on the surfaces of control volume are accurately calculated from the wet area exposed to the water, and the dry area exposed to the air. The numerical results produced by the new numerical method agree very well with the analytical solution, experimental images and experimentally measured velocity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Numerical solutions of viscoelastic flows are demonstrated for a time marching, semi‐implicit Taylor–Galerkin/pressure‐correction algorithm. Steady solutions are sought for free boundary problems involving combinations of die‐swell and stick‐slip conditions. Flows with and without drag flow are investigated comparatively, so that the influence of the additional component of the drag flow may be analysed effectively. The influence of die‐swell is considered that has application to various industrial processes, such as wire coating. Solutions for two‐dimensional axisymmetric flows with an Oldroyd‐B model are presented that compare favourably with the literature. The study advances our prior fixed domain formulation with this algorithm, into the realm of free‐surface viscoelastic flows. The work involves streamline‐upwind/Petrov–Galerkin weighting and velocity gradient recovery techniques that are applied upon the constitutive equation. Free surface solution reprojection and a new pressure‐drop/mass balance scheme are proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The object of this study is to investigate two derivative free optimization techniques, i.e. Newton‐based method and an evolutionary method for shape optimization of flow geometry problems. The approaches are compared quantitatively with respect to efficiency and quality by using the minimization of the pressure drop of a pipe conjunction which can be considered as a representative test case for a practical three‐dimensional flow configuration. The comparison is performed by using CONDOR representing derivative free Newton‐based techniques and SIMPLIFIED NSGA‐II as the representative of evolutionary methods (EM). For the shape variation the computational grid employed by the flow solver is deformed. To do this, the displacement fields are scaled by design variables and added to the initial grid configuration. The displacement vectors are calculated once before the optimization procedure by means of a free form deformation (FFD) technique. The simulation tool employed is a parallel multi‐grid flow solver, which uses a fully conservative finite‐volume method for the solution of the incompressible Navier–Stokes equations on a non‐staggered, cell‐centred grid arrangement. For the coupling of pressure and velocity a pressure‐correction approach of SIMPLE type is used. The possibility of parallel computing and a multi‐grid technique allow for a high numerical efficiency. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
This paper establishes the range of validity for a previously published three‐dimensional moving solid boundary condition for the lattice‐Boltzmann method. This method was reasonably formulated from a mass and momentum balance perspective, but was only verified for a small range of (primarily two‐dimensional) problems. One of the advantages of this boundary condition is that it offers resolution at the sub‐grid scale, allowing for accurate and stable calculation of the force and torque for solids which are moving through a lattice, even for small solid sizes relative to the computational grid size. We verify the boundary condition for creeping flows by comparison to analytical solutions that include both the force and the torque on fixed and moving spheres, and then follow this with comparisons to experimental and empirical results for both fixed as well moving spheres in inertial flows. Finally, we compare simulation results to numerical results of other investigators for the settling of an offset sphere and the drafting–kissing–tumbling of two sedimenting spheres. We found that an accurate calculation of the collision‐operator weighting used to obtain sub‐grid‐scale resolution was necessary in order to prevent spikes in the velocities, forces, and moments when solid objects cross‐computational cells. The wide range of comparisons collected and presented in this paper can be used to establish the validity of other numerical models, in addition to the one examined here. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号