首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we present an innovative, novel, and highly convenient protocol for the synthesis of 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ), which have been delineated from the reaction of 4‐sec‐amino‐2‐oxo‐6‐aryl‐2H‐pyran‐3‐carbonitrile ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) and 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐benzo[h]chromene‐3‐carbonitriles ( 9a , 9b , 9c , 9d , 9e ) with 2‐acetylpyridine ( 5 ) through the ring transformation reaction by using KOH/DMF system at RT. The salient feature of this procedure is to provide a transition metal‐free route for the synthesis of asymmetrical 1,3‐teraryls like 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ). The novelty of the reaction lies in the creation of an aromatic ring from 2H‐pyran‐2‐ones and 2H‐benzo[h]chromene‐3‐carbonitriles via two‐carbon insertion from 2‐acetylpyridine ( 5 ) used as a source of carbanion.  相似文献   

2.
Some new target products 5‐aryl‐4,5‐dihydro‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐1‐(4‐phenylthiazol‐2‐yl)pyrazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j have been synthesized by reaction of 2‐bromo‐1‐phenylethanone and compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j which were prepared from the combination of thiosemicarbazide and (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j . All the structures were established by MS, IR, CHN, and 1H NMR spectra data. Synthesis of structure diversity is applied. J. Heterocyclic Chem., (2011).  相似文献   

3.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

4.
A new series of synthesis and biological screening of 2‐(2‐aryl‐4‐methyl‐thiazol‐5‐yl)‐5‐((2‐aryl/benzylthiazol‐4‐yl)methyl)‐1,3,4‐oxadiazole derivatives 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i was achieved by condensation of 2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 2a , 2b , 2c with 4‐methyl‐2‐arylthiazole‐5‐carbaldehyde 3a , 3b , 3c followed by oxidative cyclization of N'‐((4‐methyl‐2‐arylthiazol‐5‐yl)methylene)‐2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i using iodobenzene diacetate as oxidizing agent. All the synthesized compounds were screened for their in vitro antifungal activity against Candida albicans, Candida tropicalis, Aspergillus niger, and Aspergillus flavus. Some of the synthesized compounds showed good antifungal activity.  相似文献   

5.
2‐Aryl‐hydrazononitriles 3a , 3b , 3c were prepared by coupling 3‐ethylthio‐5‐cyanomethyl‐4‐phenyl‐1,2,4‐triazole ( 1 ) with diazonium salts 2a , 2b , 2c . Reacting 3a , 3b , 3c with both ethyl bromoacetate ( 4a ) and 4‐bromobenzyl bromide ( 4b ) in DMF, in the presence of K2CO3, at 80 °C for 3–4 h, gave the corresponding 4‐amino‐pyrazoles 6a , 6b , 6c , 6d , 6e , 6f . Diazotization of 6a , 6b , 6c , 6d , 6e , 6f , followed by reaction with NaN3, leads to the formation of 4‐azidopyrazoles 8a , 8b , 8c , 8d , 8e , 8f , a new heterocyclic ring system. Interestingly, fusion of 4‐azidopyrazoles 8d , 8e , 8f at temperature higher than their melting points with 5 °C for 2 min did not give the expected fused pyrazolo[4,3‐c]isoxazoles 9 but furnished instead the novel pyrazolo[4,3‐b]quinolinones 10a , 10b , 10c , in high yields.  相似文献   

6.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

7.
A relatively short and efficient method for the utilization of 4,6‐dichloro‐2‐methylthio‐5‐nitropyrimidine ( 1 ) in the synthesis of the poly substituted pyrrolo[3,2‐d]pyrimidin‐7‐one 5‐oxides ( 6a ‐g) is reported. Some new 4‐substituted 6‐chloro‐2‐methylthio‐5‐nitropyrimidines ( 2a‐e ) were prepared by reaction of 4,6‐dichloro‐2‐methylthio‐5‐nitropyrimidine ( 1 ) with amines. 4‐Substituted 2‐methylthio‐5‐nitro‐6‐phenylethynylpyrimidines ( 3a‐e ), obtained from 4‐substituted 6‐chloro‐2‐methylthio‐5‐nitropyrimidines ( 2a‐e ) via palladium‐catalyzed Sonagashira coupling reaction with 1‐phenylacetylene, underwent smooth cyclization reaction in boiling 2‐propanol in the presence of catalytic amount of pyridine to give 4‐substituted 2‐methylthio‐6‐phenyl‐7H‐pyrrolo[3,2‐d]pyrimidin‐7‐one 5‐oxides ( 4a‐e ). The methylthio group of the latter compounds can be easily and selectively oxidized by m‐chloroperbenzoic acid and replaced with different amines.  相似文献   

8.
In continuation of our work, we synthesized 2‐(sulfamoylphenyl)‐4′‐amino‐4‐(4″‐hydroxyphenyl)‐thiazole ( 3a ), which were reacted with various (aryl/hetroaryl) aldehyde to form 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐hydroxyphenyl)‐thiazoles ( 4a , 4b , 4c , 4d , 4e , 4f ). Glucosylation of compounds ( 4a , 4b , 4c , 4d , 4e , 4f ) have been done by using acetobromoglucose as a glucosyl donor to afford 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(2,3,4,6‐tetra‐O‐acetyl‐4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 5a , 5b , 5c , 5d , 5e , 5f ), further on deacetylation to produce 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 6a , 6b , 6c , 6d , 6e , 6f ). The compounds are confirmed by FTIR, 1H‐NMR, 13C‐NMR, and ES‐Mass spectral analysis. J. Heterocyclic Chem., (2011).  相似文献   

9.
Reaction of (4E)‐4‐arylmethylene‐3,4‐dihydro‐1‐benzothiepin‐5(2H)‐ones 3a‐e with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 4a, b ) in refluxing benzene, afforded 2′,4′,5′‐triaryl‐2,2′,3,4′‐tetrahydro‐spiro[1‐benzothiepine‐4(5H),3′(3H)‐pyrazol]‐5‐ones 5a‐i and not the isomeric forms spiro[1‐benzothiepine‐4(5H),4′(4H)‐pyrazol]‐5‐ones 6 in high regioselective manner. Single crystal X‐ray diffraction studies of 5a, f, g indicated that the isolated products are 3′R, 4′ S.  相似文献   

10.
In this study, methyl 2‐(quinolin‐8‐yloxy) acetate ( 2 ) obtained by reaction of 8‐hydroxyquinoline ( 1 ) with methyl chloroacetate was condensed with hydrazine hydrate to afford the carbohydrazide ( 3 ). Thio/semicarbazide derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) were obtained by treatment of the 3 with substituted phenyl iso/thioisocyanates. The 4a , 4b , 4c , 4d , 4e , 4f , 4g on acidic and basic intramolecular cyclization led to N‐(aryl)‐5‐((quinolin‐8‐yloxy)methyl)‐1,3,4‐oxa/thiadiazol‐2‐amines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ) and 4‐aryl‐5‐((quinolin‐8‐yloxy)methyl)‐2H‐1,2,4‐triazole‐3(4H)‐thiones ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ), respectively. All the synthesized compounds were characterized by spectroscopic techniques and elemental analyses. The thiosemicarbazide ( 4c ) was also confirmed by X‐ray crystallography.  相似文献   

11.
4‐Hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐carboxaldehydes 2a‐d are prepared from 4‐hydroxy‐2‐oxo‐2H‐1‐benzopyrans 1a‐d via the Vielsmeyer Haack reaction. The 4‐hydroxy‐2‐oxo‐3‐(3′oxo‐3′‐phenylprop‐1′‐enyl)‐2H‐1‐benzopyrans 3a‐d are obtained from 2a‐d via the Claisen reaction. Refluxing compounds 3a‐d with hydrazine hydrate gave the 3‐phenyl‐5‐(4‐hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐yl)‐1,4,5‐trihydropyra‐zols 4a‐d . Stirring compounds 2a‐d with semicarbazide hydrochloride in acidic medium gave the 4‐hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐aldehyde‐semicarbazone 5a‐d , which on cyclisation with ferric chloride hexahydrate gave the 5‐(4‐hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐yl)‐2,4‐dihydro[1,2,4]triazol‐3‐ones 6a‐d . All these compounds show significant antibacterial activities.  相似文献   

12.
4‐Aminopyrazole‐3‐ones 4b, e, f were prepared from pyrazole‐3‐ones 1b‐d in a four‐step reaction sequence. Reaction of the latter with methyl p‐toluenesulfonate gave 1‐methylpyrazol‐3‐ones 2b‐d . Compounds 2b‐d were treated with aqueous nitric acid to give 4‐nitropyrazol‐3‐ones 3b‐d. Reduction of compounds 3b‐d by catalytic hydrogenation with Pd‐C afforded the 4‐amino compounds 4b, e, f. Using similar reaction conditions, nitropyrazole‐3‐ones derivatives 2c, d were reduced into aminopyrazole‐3‐ones 5e, f. 4‐Iodopyrazole‐3‐ones 7a, 7c and 8 were prepared from the corresponding pyrazol‐3‐ones 2a, 2c and 6 and iodine monochloride or sodium azide and iodine monochloride.  相似文献   

13.
A novel facile photoconversion of 4‐hydroxy‐1,2‐bezothiazine 1,1‐dioxides ( 3a‐e ) into 4‐oxo‐1,3‐2H‐benzothiazine 1,1‐dioxides ( 4a‐e ) and 4‐hydroxy‐2‐methyl‐N‐(pyridin‐2‐yl)‐2H‐1,2‐benzothiazine‐3‐carboxamide 1,1‐dioxide (PRX) into N‐methyl saccharin ( 2 ) upon 254 nm irradiation in methanol or acetonitrile is reported. The structures of the products have been elucidated by spectroscopic methods and single crystal X‐ray structure determination for 4a and 4d .  相似文献   

14.
(2E,4E)‐1‐(2‐Hydroxyphenyl)‐5‐phenylpenta‐2,4‐dien‐1‐ones 1a , 1b , 1c , 1d , 1e on oxidative cyclization with mercuric acetate in dimethylsulphoxide have provided (Z)‐2‐((E)‐3‐phenylallylidene)benzofuran‐3(2H)‐ones 2a , 2b , 2c , 2d , 2e in good yields.  相似文献   

15.
The 4‐quinolone‐2‐carbohydrazide 6a was converted into 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e , 1‐aryl‐3‐(4‐quinolon‐2‐yl)imidazolidine‐2,4‐diones 9a , 9b , and N‐(4‐quinolon‐2‐yl)carbamates 10a , 10b via 4‐quinolone‐2‐carbonylazide 7a . The 4‐methoxyquinoline‐2‐carbohydrazide 6b was also transformed into 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)ureas 11a , 11b , 11c , 11d , 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)imidazolidine‐2,4‐diones 12a , 12b , and N‐(4‐methoxyquinolin‐2‐yl)carbamates 13a , 13b via 4‐methoxyquinoline‐2‐carbonylazide 7b . Some of the 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e showed the in vitro antimalarial activity to chloroquine‐resistant Plasmodium falciparum, wherein IC50 was 0.93 to 4.00 μM.  相似文献   

16.
The reactions of α‐ferrocenylmethylidene‐β‐oxocarboxylates ( 1 , 2 , 3a , and 3b ) with N‐methyl‐ and N‐(2‐hydroxyethyl)hydrazines ( 5a , 5b ) afford ethyl 1‐alkyl‐5‐aryl(methyl)‐3‐ferrocenylpyrazole‐4‐carboxylates ( 6a , 6b , 6c , 6d , 6e ) (~50%) and N‐alkylhydrazine insertion products, viz., ethyl (N′‐acyl‐N′‐alkylhydrazino)‐3‐ferrocenylpropanoates ( 7a , 7b , 7c , 7d , 7e ) (~20%) and 1‐acyl‐2‐(N′‐alkyl‐N′‐ethoxycarbonylhydrazino)‐2‐ferrocenylethanes ( 8a , 8b , 8c , 8d , 8e ) (~10%). The structures of the compounds obtained were established based on the spectroscopic data and X‐ray diffraction analysis (for pyrazoles 6a and 6b ). J. Heterocyclic Chem., (2011).  相似文献   

17.
A novel series of coumarin substituted triazolo‐thiadiazine derivatives were designed and synthesized by using 5‐methyl isoxazole‐3‐carboxylic acid ( 1 ), thiocarbohydrazide ( 2 ), and various substituted 3‐(2‐bromo acetyl) coumarins ( 4a , 4b , 4c , 4e , 4d , 4f , 4g , 4h , 4i , 4j ). Fusion of 5‐methyl isoxazole‐3‐carboxylic acid with thiocarbohydrazide resulted in the formation of the intermediate 4‐amino‐5‐(5‐methylisoxazol‐3‐yl)‐4H‐1,2,4‐triazole‐3‐thiol ( 3 ). This intermediate on further reaction with substituted 3‐(2‐bromo acetyl) coumarins under simple reaction conditions formed the title products 3‐(3‐(5‐methylisoxazol‐3‐yl)‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl‐2H‐chromen‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j ) in good to excellent yields. All the synthesized compounds were well characterized by physical, analytical, and spectroscopic techniques.  相似文献   

18.
Pyrimido[2“,1”:5′,6′]pyrazolo[3′,4′:4,5]‐pyrimido[1,6‐a]benzoimidazoloe‐2,8(1H,7H)‐diones, and [1,2,4]‐triazino‐[3“,4”:5′,6′]pyrazolo[3′,4′:4,5]pyrimido[1,6‐a]benzimidazol‐8(7H)‐ones were synthesized in a good yields via 1‐amino‐4‐methyl‐3,4‐dihydro‐5H‐pyrazolo[3′,4′:4,5]pyrimido[1,6‐a]benzoimidazolo‐5‐one and the appropriate active methylene compounds. Structures of the newly synthesized compounds were elucidated on the basis of elemental analyses, spectral data, and alternative synthesis methods whenever possible.  相似文献   

19.
2‐[(Disubstituted‐methylene)‐hydrazino] benzoic acid phenacylesters 2a‐2d , prepared from anthranilic acid phenacylester 1 , were unsuccesfully tried as starting materials for the synthesis of N‐amino‐3‐hydroxy‐2‐phenyl‐4(1H)‐quinolinone 8 . The desired compound 8 was prepared by cyclization of N‐acetyl as well as N‐benzoyl‐hydrazinobenzoic acid phenacylester 6a or 6b in polyphosphoric acid to afford N‐acylamino‐3‐hydroxy‐2‐phenyl‐4(1H)‐quinolinone 7a or 7b , respectively. Surprisingly, the acyl group was resistant to attack by both hydrochloric acid as well as sodium hydroxide solution. It could be removed by boiling the compounds 7a or 7b respectively in 50% sulphuric acid to afford the the target compound 8 .  相似文献   

20.
The reaction of 2‐chloro‐4,5‐dihydroimidazole ( 5 ) with 2‐aminobenzohydrazides 6a–e led to the formation of 2‐amino‐N′‐(imidazolidin‐2‐ylidene)benzohydrazides as zwitterions 7a–e , which on treatment with carbon disulfide in the presence of triethylamine afforded 3‐(imidazolidin‐2‐ylideneamino)‐2‐thioxo‐2,3‐dihydroquinazolin‐4(1H)‐ones 8a–e . Compounds 8a–d were further converted into the corresponding 3‐(imidazolidin‐2‐ylideneamino)quinazoline‐2,4(1H,3H)‐diones 9a–d using hydrogen peroxide–sodium hydroxide solution. The structures of the compounds prepared were established by elemental analyses, IR and NMR spectra as well as X‐ray crystallographic analyses of 7e and 9a .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号