首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electrophoresis》2018,39(16):2152-2159
Simultaneous electromembrane extraction (EME) of six trace metal cations (Cu2+, Zn2+, Co2+, Ni2+, Pb2+, Cd2+) from saline samples was investigated. CE with capacitively coupled contactless conductivity detection (C4D) was used to determine the metals in acceptor solutions due to its excellent compatibility with the minute volumes of acceptor solutions. Bis(2‐ethylhexyl)phosphate (DEHPA) was selected as a suitable nonselective modifier for EME transport of target metal cations. Both, the individual effect of each major inorganic cation (Na+, K+, Ca2+, Mg2+) and their synergistic effect on EME of the trace metal cations were evaluated. In both cases, a decrease in extraction efficiency was observed when major inorganic cations were present in the sample. This effect was more significant for Ca2+ and Mg2+. The system was optimized for simultaneous extractions of the six target metals from saline samples (50 mM Na+, 5 mM Mg2+, 1 mM K+, and 1 mM Ca2+) and following EME conditions were applied. Organic phase consisted of 1‐nonanol containing 1% (v/v) DEHPA, acceptor solution was 1 M acetic acid (HAc) and sample pH was adjusted to 5. Sample was stirred at 750 rpm and EMEs were carried out at extraction potential of 10 V for 20 min. The method presented a repeatability between 8 and 21.8% (n = 5), good linearity in 0.5–10 μM concentration range (R2 = 0.987‐0.999) and LOD better than 2.6 nM. Applicability of the EME–CE–C4D method to the analyses of metal cations in drinking water, seawater, and urine samples was also demonstrated.  相似文献   

2.
Stable ultra‐thin Langmuir monolayers of calix[4]resorcinarene derivatives, namely: C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(R+)‐α‐methylbenzylamine (Ionophore I ), and C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(S‐)‐α‐methylbenzylamine (Ionophore II ), were prepared at the air‐water interface. Their interactions with a series of heavy metals (HM) ions (Cu2+, Pb2+, Hg2+ and Cd2+) present in the aqueous subphase were investigated by measuring surface pressure‐area isotherms, at different concentrations. The surface pressure‐area (Π‐A) isotherms were stable and demonstrated the HM amounts influence on the limiting area (Alim) values, therefore confirming the examined macrocycles capability to host the metallic toxicants. Additionally, a HM concentration dependence was realized and interpreted by a selective tendency of both ionophores towards Cu2+ and Cd2+ ions over Pb2+ and Hg2+, especially at high concentrations. The HM ions interactions with the applied calix[4]resorcinarene Langmuir ultra‐thin monolayers were interpreted based on the Gibbs‐Shishkovsky adsorption equation. Moreover, quartz crystal microbalance with impedance measurement (QCM‐I), was applied for the detection of HM ions in solutions. The QCM‐I results showed the effectiveness of the coated QCM‐I crystals in detecting the ions at different concentrations. The detection limit values were in the order of 0.16, 0.3, 0.65, 1.1 ppm (Ionophore I), as well 0.11, 0.45, 0.2, 0.89 (Ionophore II) for the Cu2+, Pb2+, Hg2+ and Cd2+ cations, respectively. Additionally, a selective tendency of both ionophores towards copper ions was shown.  相似文献   

3.
The application of protective overoxidized poly‐1‐naphtylamine membrane (ONAP) is demonstrated in combination with bismuth film microelectrode (ONAP‐BiFME) for anodic stripping voltammetric measurement of trace heavy metals in the presence of some selected surfactants. The ONAP membrane was electrochemically deposited on the surface of bare single carbon fiber microelectrode followed by the in situ or ex situ preparation of the bismuth film. The key operational parameters influencing the stripping performance of the ONAP‐BiFME were optimized and its electroanalytical performance was examined in the model solution containing Cd(II) and Pb(II) as test metal ions. The ONAP‐BiFME exhibited significantly enhanced stripping voltammetric response (approximately 70% for Cd(II) and 45% for Pb(II)) in comparison with unmodified BiFME in the absence of surfactants. In the presence of high concentrations, e.g., 20 mg L?1, of anionic or cationic surfactants, the stripping signal for, e.g., Cd(II) decreased for less than 6% at the ONAP‐BiFME, whereas at the unmodified BiFME the signal attenuated considerably (approximately 38%). Moreover, in the presence of 10 mg L?1 of nonionic surfactant Triton X‐100, the stripping signals at the bare BiFME were almost completely suppressed, whereas at the ONAP‐BiFME exhibited linear concentration behavior in the examined concentration range from 10 to 120 μg L?1, with the calculated limit of detection of 5.0 μg L?1 and 3.4 μg L?1 for Cd(II) and Pb(II), respectively in connection with 60 s accumulation time. The attractive behavior of ONAP‐modified BiFME expands the applicability of bismuth‐based electrodes for measurement of trace heavy metals in real environments, where the presence of more complex matrix can be expected.  相似文献   

4.
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1‐butyl‐3‐methyl‐imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4‐styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64?/Fe(CN)63? can be effectively improved at the PSS‐BMIMPF6 modified GC. The bismuth modified PSS‐BMIMPF6 composite film electrodes (GC/PSS‐BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS‐BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50 μg L?1. And the detection limits were 0.07 μg L?1 for Cd(II) and 0.09 μg L?1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s, respectively. Finally, the GC/PSS‐BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy.  相似文献   

5.
The aim of this report is to present the electrospray ionization mass spectrometry results of the non‐covalent interaction of two biologically active ligands, N‐1 ‐ (p‐toluenesulfonyl)cytosine, 1‐TsC, 1 and N‐1 ‐ methanesulfonylcytosine, 1‐MsC, 2 and their Cu(II) complexes Cu(1‐TsC‐N3)2Cl2, 3 and Cu(1‐MsC‐N3)2Cl2 and 4 with biologically important cations: Na+, K+, Ca2+, Mg2+ and Zn2+. The formation of various complex metal ions was observed. The alkali metals Na+ and K+ formed clusters because of electrostatic interactions. Ca2+ and Mg2+ salts produced the tris ligand and mixed ligand complexes. The interaction of Zn2+ with 1–4 produced monometal and dimetal Zn2+ complexes as a result of the affinity of Zn2+ ions toward both O and N atoms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A disposable screen‐printed device containing working, auxiliary, and reference electrodes is proposed for the simultaneous voltammetric determination of Zn(II), Pb(II), Cu(II), and Hg(II) in ethanol fuel. The working electrode was printed using an ink modified with 2‐benzothiazole‐2‐thiol organofunctionalized SBA‐15 silica, in order to increase sensitivity. The performance of this electrode was compared with that of bare and SBA‐15‐modified electrodes. After optimizing the experimental parameters, the device was applied in determination of the analytes in commercial ethanol fuel samples, using 0.10 mol L?1 KCl/ethanol ratios of 30 : 70 (v/v), with [H+]=10?5 mol L?1. After 5 min of preconcentration at ? 1.3 V (vs. pseudo‐Ag/AgCl), four well‐resolved signals were obtained, enabling simultaneous determination of the four analytes using a differential pulse anodic stripping voltammetry (DPASV) procedure. The limits of detection were 0.30, 0.065, 0.030, and 0.046 µmol L?1 for Zn(II), Pb(II), Cu(II), and Hg(II), respectively. The results of these analyses were in agreement with those obtained using graphite furnace atomic absorption spectroscopy (GFAAS) for Pb(II), Cu(II), and Hg(II), and high‐resolution continuum source flame atomic absorption spectrometry (HR‐CS‐FAAS) for Zn2+, at a 95 % confidence level. Analytes originally present in the samples could be detected, and the interference of some cations and anions was evaluated.  相似文献   

7.
Two salts of acyclic Schiff base cationic ligands, namely N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride monohydrate, C17H22N4O42+·2Cl·H2O, (I), and 2‐hydroxy‐N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride, C17H22N4O52+·2Cl, (II), were synthesized as precursors in order to obtain new acyclic and macrocyclic multidentate ligands and complexes. The cation conformations in compounds (I) and (II) are different in the solid state, although the cations are closely related chemically. Similarly, the hydrogen‐bonding networks involving ammonium cations, hydroxyl groups and chloride anions are also different. In the cation of compound (II), the hydroxyl group is disordered over two sets of sites, with occupancies of 0.785 (8) and 0.215 (8).  相似文献   

8.
Single‐labeled pyridylporphyrin–DNA conjugates are reported as highly sensitive and selective spectroscopic sensors for mercury(II) ions in water. The effects of chemical structure (thymine versus adenine), number of nucleotides (monomer versus octamer), and porphyrin metalation (Zn versus free base) on the sensitivity and selectivity of mercury(II) detection are explored. The results indicated that pyridylporphyrin rather than the nucleobase plays a crucial role in mercury(II) sensing, because porphyrin conjugates with both adenosine and thymidine exhibited excellent mercury(II) detection. Mercury(II) recognition was shown in emission quenching, as well as in a redshift of the porphyrin Soret band absorption. The limit of detection (LOD, 3σ/slope) of zinc(II) pyridylporphyrin‐5′‐oligodeoxythymidine ( ZnPorT8 ) obtained by fluorescence quenching was calculated to be 21.14 nM . Other metal cations (Zn2+, Cd2+, Pb2+, Mn2+, Ca2+, Ni2+, Mg2+, Fe2+, Cu2+, and Na+) did not interfere with the emission and absorption sensing of mercury(II). Free‐base porphyrin–oligothymine conjugate 2HPorT8 displayed similar sensitivity to ZnPorT8 but different selectivity. The results also implied that the sensing properties of porphyrin–deoxythymidine conjugates could potentially be tuned by porphyrin metalation.  相似文献   

9.
A 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS)‐multiwalled carbon nanotubes (MWCNTs) nanocomposite/Bi film modified glassy carbon (GC) electrode was constructed for the differential pulse stripping voltammetric determination of trace Pb2+ and Cd2+. This electrode was more sensitive than ABTS‐free Bi/GC and Bi/MWCNTs/GC electrodes. Linear responses were obtained in the range from 0.5 to 35 μg L?1 for Cd2+ and 0.2 to 50 μg L?1 Pb(II), with detection limits of 0.2 μg L?1 for Cd2+ and 0.1 μg L?1 for Pb2+, respectively. This sensor was applied to the simultaneous detection of Cd2+ and Pb2+ in water samples with satisfactory recovery.  相似文献   

10.
A new extraction flotation spectrum method for indirect determination of trace amounts of sulfide by ammonium sulfate‐ethanol‐water system was developed. It showed that Cu(II) could combine with S2? into precipitate (CuS) which was floated in the surface of ethanol and water in the presence of ammonium sulfate. The sulfide can be indirectly determined by determining the flotation yield of Cu(II). The linear range from 2.4 × 10?8to 3.2 × 10?6g/mL and the detect limit of 2.0 × 10?8g/mL was achieved. The results showed the determination of S2? was not affected by Pb(II), Zn(II), Cd(II), Fe(II), Co(II),Ni(II), Mn(II) and Cl?, Br?, I?, etc. In the paper, the method was successfully applied to the determination of a trace amount of sulfide in polluted water samples with the advantages of simplicity of equipment, rapidity, low cost, etc.  相似文献   

11.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

12.
In our study, the single‐use & eco‐friendly electrochemical sensor platform based on herbal silver nanoparticles (AgNPs) was developed for detection of mercury (II) ion (Hg2+). For this purpose, the surface of pencil graphite electrode (PGE) was modified with AgNPs and folic acid (FA), respectively. The concentrations of AgNPs and FA were firstly optimized by differential pulse voltammetry (DPV) to obtain an effective surface modification of PGE. Each step at the surface modification process was characterized by using cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The limit of detection (LOD) for Hg2+ was estimated and found to be 8.43 μM by CV technique. The sensor presented an excellent selectivity for Hg2+ against to other heavy metal ions such as Ca2+, Cd2+, Cr3+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Co2+ and Mn2+. Moreover, a rapid, selective and sensitive detection of Hg2+ was successfully performed in the samples of tap water within 1 min.  相似文献   

13.
Bis(5‐chloro‐8‐hydroxyquinolinium) tetrachloridopalladate(II), (C9H7ClNO)2[PdCl4], (I), catena‐poly[dimethylammonium [[dichloridopalladate(II)]‐μ‐chlorido]], {(C2H8N)[PdCl3]}n, (II), ethylenediammonium bis(5‐chloroquinolin‐8‐olate), C2H10N22+·2C9H5ClNO, (III), and 5‐chloro‐8‐hydroxyquinolinium chloride, C9H7ClNO+·Cl, (IV), were synthesized with the aim of preparing biologically active complexes of PdII and NiII with 5‐chloroquinolin‐8‐ol (ClQ). Compounds (I) and (II) contain PdII atoms which are coordinated in a square‐planar manner by four chloride ligands. In the structure of (I), there is an isolated [PdCl4]2− anion, while in the structure of (II) the anion consists of PdII atoms, lying on centres of inversion, bonded to a combination of two terminal and two bridging Cl ligands, lying on twofold rotation axes, forming an infinite [–μ2‐Cl–PdCl2–]n chain. The negative charges of these anions are balanced by two crystallographically independent protonated HClQ+ cations in (I) and by dimethylammonium cations in (II), with the N atoms lying on twofold rotation axes. The structure of (III) consists of ClQ anions, with the hydroxy groups deprotonated, and centrosymmetric ethylenediammonium cations. On the other hand, the structure of (IV) consists of a protonated HClQ+ cation with the positive charge balanced by a chloride anion. All four structures are stabilized by systems of hydrogen bonds which occur between the anions and cations. π–π interactions were observed between the HClQ+ cations in the structures of (I) and (IV).  相似文献   

14.
Besides their fundamental importance, multiply charged anions (MCAs) are considered as promising molecular capacitors for which their intrinsic stabilities are of great significance. Herein, the gas‐phase stabilities of ethylenediaminetetraacetic acid (EDTA) anions (i.e. [EDTA‐nH]n?, n = 1–4) and their Pb(II) complexes (i.e. [EDTA + Pb‐nH](2‐n)?, n = 3, 4) have been investigated using an approach that combines extractive electrospray ionization mass spectrometry (EESI‐MS) measurements, Car–Parrinello molecular dynamics simulations and density functional theory/Tao–Perdew–Staroverov–Scuseria calculations. The EESI‐MS data showed that the doubly charged EDTA anions in the form of [EDTA‐2H]2? and [EDTA + Pb‐4H]2? were much more abundantly observed than the singly charged species such as [EDTA‐H]? and [EDTA + Pb‐3H]?, respectively. The calculation results indicated that [EDTA‐2H]2? and [EDTA + Pb‐4H]2? anions were thermodynamically more stable than the [EDTA‐H]? and [EDTA + Pb‐3H]? species in the gas phase, respectively. The [EDTA + Pb‐3H]? anions preferred five‐coordinated structure, whereas [EDTA + Pb‐4H]2? anions formed either five‐coordinated or six‐coordinated structures. The calculations further revealed that significant electron clouds drifting from the ligand EDTA to the metal Pb(II) ions and the large distances between the carboxylic groups reduced the Coulomb repulsion among the excess electrons of these MCAs. Our data demonstrated that EESI‐MS combined with theoretic calculations were able to provide a deep insight into the fundamental behavior of stability of MCAs in the gas phase and, thus, might be useful tools for studying MCAs for potential molecular capacitors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
To the determination of trace amount of Cd(II) present in food and water samples, a selective and extractive spectrophotometric method were developed with 2,6‐diacetylpyridine‐bis‐4‐phenyl‐3‐thiosemicarbazone as a complexing agent. The yellowish orange colored metal complex, Cd(II)‐2,6‐DAPBPTSC with 1:1 (M:L) composition was extracted in to cyclohexanol at pH 9.5 and was shows maximum absorbance at λmax 390 nm. This method obeys Beer's law in the range of 1.12‐11.25 ppm with 0.972 correlation coefficient of Cd(II)‐2,6‐DAPBPTSC complex, which is indicates linearity between the two variables. The molar absorptivity and sandell's sensitivity were found to be 6.088 × 104 L mol?1 cm?1 and 0.0018 μg cm?2, respectively. The instability constant calculated from Asmus' method (1.447 × 10?4)at room temperature. The precision and accuracy of the method were checked by relative standard deviation (n = 5), 0.929 and its detection limit, 0.0060 μg mL?1. The interfering effects of various cations and anions were also studied. The proposed method was successfully applied to the determination of Cd(II) in foods and water samples, and was evaluated its performance in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of present method. The inter comparison of the experimental values, using atomic absorption spectrometer (AAS), was also repoted.  相似文献   

16.
A practical, two‐step synthesis of novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 has been reported. The strategy employed for the synthesis of the desired molecules involved Duff formylation of benzo‐15‐crown‐5 to get 4‐formyl benzo‐15‐crown‐5 followed by subsequent reactions with substituted indoles in trifluoroacetic acid to yield novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 in moderate to good yield. One of the reported novel molecule tested for the complexation behavior with various metal cations, such as Li+, Na+, K+, Mg2+ Ca2+, Al3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Ba2+, Hg2+, and Pb2+, showed a visual colorimetric probe for the detection of mercury cations (Hg2+) in an aqueous medium.  相似文献   

17.
A submersible probe with a flow-through cell allowing in situ voltammetric measurements by means of either a mercury film or a mercury drop electrode has been developed. The various possibilities of voltammetric measurements in the presence of dissolved oxygen have been reviewed and tested. Optimum conditions for the determination of trace metals in oxygenated waters have been found. In situ determinations of Mn(II) in anoxic lake water and of trace metals (Cu2+, Pb2+, Cd2+, Zn2+) in oxygen-saturated sea water are reported.  相似文献   

18.
The photophysical characteristics of a polymerizable 1,8‐naphthalimide dye and its copolymer with styrene have been investigated. The functional properties of both low and high molecular weight fluorophores in the presence of different metal cations have been discussed with regard to their potential application as fluorosensors for the metal cations and protons. In acetonitrile solution the monomeric 1,8‐naphthalimide enhances its fluorescence emission in the presence of metal cations (Zn2+, Fe3+, Co2+, Pb2+, Cu2+, Ni2+, and Mn2+). In aqueous media the poly(St‐co‐MD) exhibits a selective response to Fe3+ cations. The monomeric and polymeric fluorophores also exhibit a considerable increase in their fluorescence intensity at acidic pH values (pH < 6) which suggest that they could be used as ON–OFF probes in analytical devices for signaling the presence of protons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
《Analytical letters》2012,45(5):1009-1021
Abstract

Application of morpholine dithiocarbamate (MDTC) coated Amberlite XAD‐4, for preconcentration of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II) by solid phase extraction and determination by inductively coupled plasma (ICP) atomic emission spectrometry (AES) was studied. The optimum pH values for quantitative sorption of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II), and Mn(II) were 6.5–8.0, 7.0–8.5, 6.0–8.5, 6.5–8.5, 7.5–9.0, and 8.0–8.5, respectively. The metals were desorbed with 2 mol L?1. The t1/2 values for sorption of metal ions were 2.6, 2.9, 2.5, 2.6, 3.0, and 3.8 min respectively for Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II). The effect of diverse ions on the determination of the previously named metals was studied. Simultaneous enrichment of the six metals was accomplished, and the method was applied for use in the determination of trace metal ions in seawater samples.  相似文献   

20.
This paper describes the spectrofluorimetric determination of picogram level Pb(II) using 2,5-dimercapto-1,3,4-thiadiazole (DMT) as a fluorophore. Excitation of DMT at 330 nm shows an emission maximum at 435 nm. The colorless solution of DMT changes into highly emittive yellow color immediately after the addition of 0.5 μM Pb(II) and nearly 245-fold increase in emission intensity at 435 nm was observed. These changes were attributed to the complex formation between Pb(II). The emission intensity linearly increases in the concentration range of 10–100 nM Pb(II) and DMT. Based on the fluorescence enhancement, the concentration of Pb(II) was determined. Interestingly, the emission intensity was increased even in the presence of 0.1 pM Pb(II). The fluorophore showed an extreme selectivity towards 100 nM Pb(II) even in the presence of 50,000-fold higher concentrations of common metal ions interferences such as Na+, K+, Ca2+, Mg2+, Fe2+, Cd2+, Cr3+, Mn2+, Zn2+, Co2+, Ni2+ and 5000-, 100- and 40-fold of Cu2+, Hg2+ and Ag+ ions, respectively. The lowest detection of 20 pg L−1 Pb(II) was achieved for the first time using DMT. The proposed method was successfully utilized for the determination of Pb(II) in tap water, polluted river water and industrial waste water samples. The results obtained in the present study were validated with both AAS and ICP-AES methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号