首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While [Ni(cyclam)]2+ and [Ni(dithiacyclam)]2+ complexes were shown to be potent electrocatalysts for the CO2 conversion, their respective Co complexes hitherto received only little attention. Herein, we report on the CoII complexes of the cyclam and dithiacyclam platform, describe their synthesis and reveal their rich solvent dependent coordination chemistry. We show that sulfur implementation into the cyclam moiety leads to a switch from a low spin CoII complex in [Co(cyclam)]2+ to a high spin form in [Co(dithiacyclam)]2+. Notably, while both complexes are capable to perform the reduction of CO2 to CO, H2 formation is generally preferred. Along this line, the complexes were shown to enable proton reduction from acetic acid. However, in comparison to [Co(cyclam)]2+, the altered electronics make [Co(dithiacyclam)]2+ complexes prone to deposit on the glassy carbon working electrode over time leading to an overall low faradaic efficiency for the reduction of protons or CO2.  相似文献   

2.
In the present research, the electro oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with bis(salicylaldehyde)‐nickel(II)‐dihydrate complex (Ni(II)‐BS) and reduced graphene oxide (RGO) (which named Ni(II)‐BS/RGO/CPE) in an alkaline solution. This modified electrode showed very efficient activity for oxidation of methanol. It was found that methanol was oxidized by NiOOH groups generated by further electrochemical oxidation of nickel (II) hydroxide on the surface of the modified electrode. The rate constant and electron transfer coefficient were calculated to be 2.18 s?1 and 0.4, respectively. The anodic peak currents revealed a linear dependency with the square root of scan rate. This behaviour is the characteristic of a diffusion controlled process, so the diffusion coefficient of methanol was found to be 1.16×10?5 cm2 s?1 and the number of transferred electron was calculated to be 1. Moreover, differential pulse voltammetry (DPV) investigations showed that the peak current values were proportional to the concentration of methanol in two linear ranges. The obtained linear ranges were from 0.5 to 100.0 µM (R2=0.991) and 400.0 to 1300.0 µM (R2=0.992), and the detection limit was found to be 0.19 µM for methanol determination. Generally, the Ni(II)‐BS/RGO/CPE sensor was used for determination of methanol in an industrial ethanol solution containing 4.0 % methanol.  相似文献   

3.
An iridium pincer dihydride catalyst was immobilized on carbon nanotube‐coated gas diffusion electrodes (GDEs) by using a non‐covalent binding strategy. The as‐prepared GDEs are efficient, selective, durable, gas permeable electrodes for electrocatalytic reduction of CO2 to formate. High turnover numbers (ca. 54 000) and turnover frequencies (ca. 15 s?1) were enabled by the novel electrode architecture in aqueous solutions saturated in CO2 with added HCO3?.  相似文献   

4.
《中国化学会会志》2018,65(5):603-612
In this work, the electrochemical oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with (N‐5‐methoxysalicylaldehyde, N´‐2‐hydroxyacetophenon‐1, 2 phenylenediimino nickel(II) complex (Ni(II)–MHP) and reduced graphene oxide (RGO), which is named Ni(II)‐MHP/RGO/CPE, in an alkaline solution. This modified electrode was found to be efficient for the oxidation of methanol. It was found that methanol was oxidized by the NiOOH groups generated by further electrochemical oxidation of nickel(II) hydroxide on the surface of the modified electrode. Under optimum conditions, some parameters of the analyte (MeOH), such as the electron transfer coefficient (α), the electron transfer rate constant) ks), and the diffusion coefficient of species in a 0.1 M solution (pH = 13), were determined. The designed sensor showed a linear dynamic range of 2.0–100.0 and 100.0–1000.0 μM and a detection limit of 0.68 μM for MeOH determination. The Ni(II)‐MHP/RGO/CPE sensor was used in the determination of MeOH in a real sample.  相似文献   

5.
The effect of the metal center of [ML] complexes [M = Ni(II), Cu(II); L = N,N′-ethylenebis(acetylacetoniminato)] on their electrochemistry and electrocatalytic activity for the reduction of CO2 and protons has been studied using cyclic voltammetry and bulk electrolysis. The two complexes exhibit different electrochemistries, which are not significantly dependent on the nature of the solvent. The electrocatalytic activity of [NiL] is significantly higher than that of [CuL] for CO2 reduction, due to the higher stability of the electrochemically generated [Ni(I)L] complex, relative to the Cu(I) analog. The diffusion coefficient of [NiL] calculated from the steady-state diffusion limiting current is 3.0 × 10?6 cm2 s?1. The catalytic efficiency of [NiL] in non-aqueous solvents in terms of i p(CO2)/i p(N2) per nickel center is smaller than that of [Ni(cyclam)]2+, but greater than those of sterically hindered mononuclear [Ni(1,3,6,8,10, 13,15-heptaazatricyclo(11.3.1.1) octadecane)]2+ or multinuclear [Ni3 (X)]6+ where X = 8,8′,8″-{2,2′,2″(-nitrilotriethyl)-tris(1,3,6,8,10,13,15-heptaazatricyclo(11.3.1.1) octadecane}. Both [NiL] and [CuL] are also electrocatalysts for the reduction of carboxylic acid protons, with the catalytic pathway being different for acetic and trifluoroacetic acids in MeCN.  相似文献   

6.
Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO2RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH and H2O activity that in turn can possibly affect activity, stability, and selectivity of the CO2RR. We determine the local OH and H2O activity in close proximity to a CO2-converting Ag-based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear-force-based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt-tip nanosensor. We show that high turnover HER/CO2RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.  相似文献   

7.
DNA as a medium for electron transfer has been widely used in photolytic processes but is seldom applied to dark reaction of CO2 reduction. A G‐quadruplex nanowire (tsGQwire) assembled by guanine tetranucleotides was used to host several metal complexes and further to mediate electron transfer processes in the electrochemical reduction of CO2 catalyzed by these complexes. The tsGQwire modified electrode increased the Faradaic efficiency of cobalt(II) phthalocyanine (CoIIPc) 2.5‐folds for CO production than bare CoIIPc electrode, with a total current density of 11.5 mA cm?2. Comparable Faradaic efficiency of HCOOH production was achieved on tsGQwire electrode when the catalytic center was switched to a GQ targeting Ru complex. The high efficiency and selectivity of electrocatalytic CO2 reduction was attributed to the unique binding of metal complexes on G‐quadruplex and electron transfer mediated by GQ nanowire to achieve efficient redox cycling of catalytic centers on the electrode.  相似文献   

8.
The synthesis, crystal structure and electrochemical properties of a Ni(II) Schiff base complex, [Ni(L)]PF6 (where L is 2,4,9,11,11-pentamethyl-2,3,4 triaza-1-one-4-amine) are reported herein. The complex has been characterized by its electrochemical behavior, X-ray crystallographic structural analysis, physio-chemical methods and spectroscopic techniques. Electrospray mass spectroscopic analysis gives a dominant ion peak with m/z = 296 which corresponds to the {[Ni(L)]PF6–HPF6}+ fragment. Cyclic voltammograms for [Ni(L)]PF6, obtained in DMF (0.1 M Bu4NPF6) at a glassy carbon electrode with a scan rate of 100 mV s?1, exhibit reversible ([NiII(L)]+/[NiI(L)]) reduction and chemically irreversible ([NiII(L)]+/[NiIII(L)]2+→ electroactive product) oxidation processes at ?2.05 and 0.62 V, respectively. The diffusion coefficient, calculated using the Randles–Sevcik relationship, is 9.7 × 10?6 cms?1. Electrochemical studies reveal that the NiI reduced form of the complex is capable of catalyzing CO2 reduction at a potential that is thermodynamically more favorable than for the reduced [Ni(N,N′-ethylenebis(acetylacetoneiminato)]complex. Spectroelectrochemical analyses following bulk electrolysis of [Ni(L)]PF6 under CO2 revealed the formation of oxalate and bicarbonate.  相似文献   

9.
The electrochemical behavior of Ni cermet electrode with CeO2 ? x additive in contact with YSZ electrode was studied by means of impedance spectroscopy in H2, H2O, CO2, CO, He, and Ar gas media of various composition within the temperature range of 700 to 950°C. Near the equilibrium potential, the electrochemical impedance spectra of the studied electrodes indicate to three stages of electrode reaction. The polarization conductivity of the low-frequency stage of electrode reaction (σlf) is characterized with the following regularities: (a) temperature dependence of σlf has a positive slope in Arrhenius coordinates; (b) σlf increases upon replacement of gas mixture with lower mutual diffusion coefficient by mixture with higher mutual diffusion coefficient, while polarization conductivity values of other stages remain practically invariable; (c) concentration relationships of 1/σlfrecorded for constant activity of oxygen in the gas phase are linear in the 1/σlf vs. 1/P CO 2 (P CO) coordinates; (d) no low-frequency stage of the electrode reaction is observed upon electrochemical inflow (outflow) of the gas reagents (reaction products) to (from) the test electrodes (current passing through closely pressed specimens and central specimen impedance measurement); and (e) no change in the gas flow rate affects σlf value. The observed regularities were explained by assuming the gas diffusion nature of the low-frequency stage of the electrode reaction. The gas diffusion layer thickness was estimated.  相似文献   

10.
This paper describes the preparation of a new sensor based on Zn‐ferrite modified glassy carbon paste electrode and its electrochemical application for the determination of trace Cd(II) ions in waste waters using differential pulse anodic stripping voltammetry (DPASV). Different Zn/Ni ferrite nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and X‐ray powder diffraction (XRPD). The prepared ferrite nanoparticles were used for the preparation of Zn‐ferrite‐modified glassy carbon paste electrode (ZnMGCPE) for determination of Cd(II) at nanomolar levels in waste water at pH 5. The different parameters such as conditions of preparation, Zn2+/Ni2+/Fe2+ ratio and electrochemical parameters, percentage of modifier, accumulation time, pH and accumulation potential were investigated. Besides, interference measurements were also evaluated under optimized parameters. The best voltammetric response was observed for ZnFe2O4 modifier, when the percentage of modifier was 3 %, accumulation time 9 min, pH of supporting electrolyte 5 and accumulation potential ?1.05 V. Thus prepared electrode displays excellent response to Cd(II) with a detection limit of 0.38 ppb, and selective detection toward Cd(II) was achieved.  相似文献   

11.
Reported here is the chelate effect as a design principle for tuning heterogeneous catalysts for electrochemical CO2 reduction. Palladium functionalized with a chelating tris‐N‐heterocyclic carbene (NHC) ligand (Pd‐timtmbMe) exhibits a 32‐fold increase in activity for electrochemical reduction of CO2 to C1 products with high Faradaic efficiency (FEC1=86 %) compared to the parent unfunctionalized Pd foil (FE=23 %), and with sustained activity relative to a monodentate NHC‐ligated Pd electrode (Pd‐mimtmbMe). The results highlight the contributions of the chelate effect for tailoring and maintaining reactivity at molecular‐materials interfaces enabled by surface organometallic chemistry.  相似文献   

12.
《化学:亚洲杂志》2017,12(24):3110-3113
We developed a metalloligand strategy to construct porous frameworks, viz. the combined use of IrIII‐based octahedral metalloligands and the linear unit [Ni(cyclam)] easily afforded two isostructural complexes 1 and 2 with primitive cubic frameworks. Both complexes show good CO2/N2 separation property.  相似文献   

13.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

14.
Glassy carbon electrodes modified with conducting polymers of Ni(II), Zn(II) and metal free tetraruthenated porphyrin were evaluated for reduction and oxidation processes of S(IV) oxoanions in Na2SO3/water‐ethanol at pH 1.0 and 3.5, showing electrocatalytic activity. A Ni(II) film was able to reduce the S(IV) oxoanions selectively in presence of high concentration of gallic acid. The Ni(II) film was also used as an amperometric sensor toward S(IV) oxoanions reduction in white wine samples showing a detection and quantification limit of 1.40 mg L?1 and 4.68 mg L?1, respectively. These results are promising for the electrochemical determination of S(IV) using conducting polymers from these macrocycles.  相似文献   

15.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

16.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

17.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

18.
A Ni(II) complex, [NiII(Me4-NO2Bzo[15]tetraeneN4)], was used for electrocatalytic reduction of CO2 in acetonitrile solvent. Then, the reduced form of CO2 (CO2?) was used for selective carboxylation of phenylacetylene to produce cinnamic acid at room temperature. The potential of the process is significantly less negative in comparison with those reported earlier. Using sacrificial magnesium electrode as anode, controlled potential coulometry was carried out in an undivided glass cell. The spectral characterizations of FTIR, 1H NMR, and 13C NMR demonstrated that cinnamic acid was the main product of the electrolysis. With respect to other catalysts, which have been previously reported in the literature, application of the Ni(II) complex in carboxylation of unsaturated compounds has three advantages: (1) the selectivity in the production of cinnamic acid; (2) more increase in the reduction current indicating that the carboxylation of phenylacetylene is fast; and (3) the potential shift of electrocatalytic reduction of CO2 to less negative values showing that the Ni(II) complex has an excellent electrocatalytic activity for CO2 reduction. According to the voltammetric and coulometric results, an EC′CCC′C mechanism was proposed for the electrocatalytic synthesis of cinnamic acid.  相似文献   

19.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

20.
The ability to capture, store, and use CO2 is important for remediating greenhouse‐gas emissions and combatting global warming. Herein, Au nanoparticles (Au‐NPs) are synthesized for effective electrochemical CO2 reduction and syngas production, using polyethylenimine (PEI) as a ligand molecule. The PEI‐assisted synthesis provides uniformly sized 3‐nm Au NPs, whereas larger irregularly shaped NPs are formed in the absence of PEI in the synthesis solution. The Au‐NPs synthesized with PEI (PEI?Au/C, average PEI Mw=2000) exhibit improved CO2 reduction activities compared to Au‐NPs formed in the absence of PEI (bare Au NPs/C). PEI?Au/C displays a 34 % higher activity toward CO2 reduction than bare Au NPs/C; for example, PEI?Au/C exhibits a CO partial current density (jCO) of 28.6 mA cm?2 at ?1.13 VRHE, while the value for bare Au NPs/C is 21.7 mA cm?2; the enhanced jCO is mainly due to the larger surface area of PEI?Au/C. Furthermore, the PEI?Au/C electrode exhibits stable performance over 64 h, with an hourly current degradation rate of 0.25 %. The developed PEI?Au/C is employed in a CO2‐reduction device coupled with an IrO2 water‐oxidation catalyst and a proton‐conducting perfluorinated membrane to form a PEI?Au/C|Nafion|IrO2 membrane‐electrode assembly. The device using PEI?Au/C as the CO2‐reduction catalyst exhibits a jCO of 4.47 mA/cm2 at 2.0 Vcell. Importantly, the resulted PEI?Au/C is appropriate for efficient syngas production with a CO ratio of around 30–50 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号