首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Steady-state current densities of electrooxidation of CH3OH, HCOOH, and CO at the Pt-PAN-GC electrodes (where PAN and GC stand for polyaniline and glassy carbon, respectively) and those of electrooxidation of HCOOH at the Pd-PAN-GC electrodes are measured (per cm2 of the true metal-catalyst surface area). The found higher activity of Pt and Pd particles incorporated in PAN, as compared with Pt/Pt and Pd/Pt, is attributed to interaction between metal-catalyst particles and the polymeric matrix. The activation effect is the most pronounced for the HCOOH electrooxidation at Pd-PAN-GC. The data concerning hydrogen evolution testify in favor of a decrease in exchange currents of this reaction upon going from Pt to Pt-PAN-GC electrodes  相似文献   

2.
乙醇和CO在Pt-WO3/C电极上的电催化氧化   总被引:1,自引:0,他引:1  
制备并比较了Pt/C和Pt-WO3/C催化剂对乙醇的电化学氧化活性.发现无论是在酸性溶液中还是中性溶液中,Pt-WO3/C电极对乙醇氧化的电催化活性都比在Pt/C电极上高.这是由于WO3能提供乙醇在Pt上氧化所需的含氧物种,此外WO3能在较低电位下使乙醇氧化的中间产物CO氧化除去,从而提高了催化剂对乙醇氧化的催化活性.  相似文献   

3.
An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodeposition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.  相似文献   

4.
An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodepo-sition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.  相似文献   

5.
A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.  相似文献   

6.
通过循环伏安法电沉积使直径约为7 nm的Pt纳米粒子均匀地分散于多孔硅表面, 拟用作微型质子交换膜燃料电池的催化电极. 与刷涂法相比较, 电沉积Pt纳米粒子的多孔硅电极(Pt/Si)呈现出高的Pt利用率和增强的电催化活性. 当Pt载量为0.38 mg•cm−2时, 其电化学活性比表面积高达148 cm2•mg−1, 是刷涂相近质量的纳米Pt/C催化剂的多孔硅电极Pt-C/Si的2倍多;该修饰电极对甲醇氧化也呈现了增强的催化性能和好的稳定性, 在0.5 V(vs SCE)极化1 h后电流密度为4.52 mA•cm−2, 而刷涂了相近Pt量的Pt-C/Si电极的电流密度只有0.36 mA•cm−2.  相似文献   

7.
The electrooxidation of carbon monoxide and methanol on Pt-coated Au nanoparticles attached to 3-aminopropyl trimethoxysilane-modified indium tin oxide electrodes was examined as a function of Pt film thickness and Au particle coverage. For the electrodes with medium and high Au particle coverages, the CO stripping peak position shifts to more negative values with increasing Pt film thickness, from ca. 0.8 V (vs Ag/AgCl) at 1 ML to 0.45 V at 10 ML. Accompanying this peak potential shift is the sharpening of the peak width from more than 150 to 65 mV. For the electrode with low Au particle coverage, similar peak width narrowing was also observed, but the peak potential shift is much smaller, from 0.85 V at 1 ML of Pt to 0.65 V at 10 ML. These observations are compared with the CO oxidation on bulk Pt electrodes and on Pt films deposited on bulk Au electrodes. The film-thickness-dependent CO oxidation is explained by d band theory in terms of strain and ligand effects, the particle size effect, and the particle aggregation induced by Pt film growth. Corresponding to the increasing CO oxidation activity, the current density of methanol oxidation grows with the Pt film thickness. The peak potential and current density reach the same values as those obtained on a polycrystalline bulk Pt electrode when more than 4 ML of Pt is deposited on the Au particle electrodes with a particle coverage higher than 0.25. These results suggest that it is feasible to reduce Pt loading in methanol fuel cells by using Pt thin films as the anode catalyst.  相似文献   

8.
不同电极材料和不同酸介质对3-甲基吡啶电氧化的影响   总被引:1,自引:0,他引:1  
在以质子交换膜为隔膜的电解池内,通过3-甲基吡啶在PbO2/Ti、SnO2/Ti、石墨和MnO2/Ti电极上的电氧化研究发现,在硫酸溶液中,PbO2电极是催化活性最高的工作电极.通过3-甲基吡啶在硫酸、高氯酸、磷酸和乙酸介质中的电氧化研究发现,对于PbO2电极,硫酸是最适合的介质.利用循环伏安实验和恒电位电解实验,研究了电氧化条件和电催化活性,比较了各种条件下的电流效率和选择性.  相似文献   

9.
乙二醇在Pt-WO3/C上的电催化氧化   总被引:1,自引:0,他引:1  
用循环伏安(CV)和线性扫描(LSV)法研究了乙二醇(EG)在碳载Pt-WO3/(Pt-WO3//C)和碳载Pt(Pt/C)电极上的电化学氧化行为. 发现Pt-WO3//C电极对EG氧化的电催化活性比Pt/C电极高. 这是由于WO3/能提供EG在Pt上氧化所需的含氧物种,而且WO3/能降低EG氧化的中间产物CO在Pt上的吸附强度.  相似文献   

10.
The Clostridium acetobutylicum [FeFe]-hydrogenase HydA has been investigated as a hydrogen production catalyst in a photoelectrochemical biofuel cell. Hydrogenase was adsorbed to pyrolytic graphite edge and carbon felt electrodes. Cyclic voltammograms of the immobilized hydrogenase films reveal cathodic proton reduction and anodic hydrogen oxidation, with a catalytic bias toward hydrogen evolution. When corrected for the electrochemically active surface area, the cathodic current densities are similar for both carbon electrodes, and approximately 40% of those obtained with a platinum electrode. The high surface area carbon felt/hydrogenase electrode was subsequently used as the cathode in a photoelectrochemical biofuel cell. Under illumination, this device is able to oxidize a biofuel substrate and reduce protons to hydrogen. Similar photocurrents and hydrogen production rates were observed in the photoelectrochemical biofuel cell using either hydrogenase or platinum cathodes.  相似文献   

11.
分别采用玻碳( GC)、铂( Pt)和金( Au)电极研究了在Br?nsted酸性离子液体[ HMIm] HSO4中电解水制氢的催化活性,活性大小为Pt > Au >> GC。水中离子液体的含量对析氢电流影响很大,当[ HMIm] HSO4含量为30%(V/V)时,Pt电极催化电解水产氢的阈值电位高达-0.3 V (Ag丝为准参比电极, Ag QRE),在-0.5 V (Ag QRE)处电流密度高达110.52 mA/cm2,为相同条件下Au电极的15倍,GC电极的650倍。计算结果表明,Pt电极在该电解液中的反应活化能为5.68 kJ/mol。电极的高催化活性与[ HMIm] HSO4电离产生的质子有关,使水以H3 O+的形式捕集电子,效率更高。  相似文献   

12.
采用欠电位沉积(upd)方法在Pt 表面沉积亚单层的Ru制备出upd-Ru/Pt 电极. 通过欠电位沉积前后电极在0.5 mol·L-1 H2SO4溶液中循环伏安图-152 - 128 mV(vs Ag/AgCl)电位范围内对氢区的数值积分确定Pt表面Ru 的覆盖度. 用电化学方法测试了甲醇在upd-Ru/Pt电极上的催化氧化, 并讨论分析了欠电位沉积电位和Ru的表面覆盖度对甲醇氧化的影响. 结果表明, Ru能够欠电位沉积到Pt表面. Pt表面欠电位沉积少量的Ru 即能大大促进甲醇的氧化.只要控制upd-Ru的沉积量, upd-Ru原子就能大大促进甲醇氧化而与沉积电位无关. Ru原子对甲醇氧化的促进作用与Ru和Pt是否形成合金无关, 而取决于Ru 在Pt表面的百分含量.  相似文献   

13.
通过循环伏安扫描法制备了PMo12修饰Pt/Pt电极,并研究了该修饰电极在硫酸溶液中的电化学行为。研究结果表明:虽然磷钼酸具有较大的分子尺寸,但在Pt/Pt电极上仍能发生吸附作用,并且由于PMo12在电极上的吸附,降低了Pt/Pt电极上氢区和氧区的荷电量,另外在0.02V左右还观察到磷钼酸的氧化-还原峰。通过稳态极化曲线和循环伏安曲线研究了PMo12修饰Pt/Pt电极对甲醇氧化的电催化作用。测试结果表明:PMo12修饰铂基电极不但对甲醇的电氧化具有较高的活性,而且还有一定的抗CO中毒性。该修饰电极还具有较高的稳定性。  相似文献   

14.
In this work, Ptpc/Ir/Pt metallic multilayer nanostructured electrodes were prepared. The composition and number of the constituent metal layers were varied and the number of Ir and Pt layers studied were: 1.5:1.5, 1.5:10, 10:1.5, 10:10 and 250:250 Ir and Pt monolayers. The ethanol electrooxidation reaction and its products was studied using electrochemical in situ FTIR technique and could be observed as a selective cleavage of the ethanol CC bond in acidic electrolyte. Neither acetaldehyde nor acetic acid IR band could be observed for ethanol electrooxidation at 1.5 V vs. RHE over Ptpc/Ir250/Pt250 metallic multilayer electrodes. Also, the enhancement on CO2 production over this electrode was more than six times the amount observed using the Ptpc electrodes. Thus, the complete CC cleavage bond in ethanol molecule was observed, leading only CO2 as reaction product.  相似文献   

15.
Kinetic of hydrogen evolution reaction, HER, at Pt and polyaniline, PANI, polymer film modified Pt electrodes in the sulphuric acid solution was investigated within the context of possible inhibition of HER by conducting polymers. Pt/PANI electrodes were prepared by electro-polymerization procedure with different quantities of PANI and electrochemically aged in the insulating state prior polarization and electrochemical impedance spectroscopy experiments. Polarization and impedance data obtained in the hydrogen (0.30 to 0.05 VRHE) and HER (0.00 to ?0.155 VRHE) potential regions of bare Pt-poly electrode were compared with those of Pt/PANI electrodes. Significant differences of impedance spectra in the hydrogen region of potentials pointed toward domination of hydrogen under-potential deposition, H UPD, at Pt-poly surface and domination of PANI impedance at Pt/PANI electrodes, respectively. Quite similar impedance spectra obtained in the HER region of potentials and Tafel slopes of about 30 mV decade?1 evaluated from polarization measurements indicated that HER is proceeding by the same mechanism at Pt-poly and Pt/PANI electrodes, respectively. Analysis of respective impedance parameters showed that HER which is easily driven at Pt-poly electrode becomes inhibited to a certain extent at both Pt/PANI electrodes, but more for the one with higher quantity of PANI. These results can commonly be interpreted by HER that is taking place on the Pt substrate underlying more or less porous PANI film acting as a barrier toward electrolyte solution.  相似文献   

16.
On a number of electrodes the second step in hydrogen evolution is the reaction of a proton with an adsorbed hydrogen intermediate to form a molecule, which is also known as the Heyrovsky reaction. We have developed a model Hamiltonian for this reaction, which for concrete applications requires extensive calculations on the basis of density-functional theory. Explicit results are presented for a Ag(111) electrode. The rate-determining step is electron transfer to the proton that approaches the electrode from the solution. At the saddle point for this reaction the adsorbed hydrogen atom has moved a little away from the surface in order to reduce the repulsion of the product molecule. Electron transfer to the proton occurs when the distance between the two particles is close to the bond distance of the hydrogen molecule.  相似文献   

17.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

18.
The catalytic influence of underpotential-deposited (upd) submonolayers of heavy metals (i.e. Pb, Tl, Bi) on the electrooxidation of D-glucose on various noble metal electrodes (i.e. Pd, Rh, Ir) is studied in alkaline media, and the results are compared with those observed for these systems when Pt was used as the electrode. In the case of Rh and Ir electrodes the catalytic activity is expressed mainly through the considerable increase of the respective current peaks as well as through the negative shift of the oxidation peak in the double-layer region, while in the case of the Pd electrode no significant catalytic action of upd ad-layers on the oxidation of D-glucose is observed. An explanation of the enhancement of the catalytic action of these electrodes (except Pd) is given on the basis that the upd ad-atoms decrease the electrode poisoning, due to an intermediate gluconolactone-type adsorbate, according to the third body mechanism in electrocatalysis. Finally, from a volcano-type diagram it is found that for the catalysis of D-glucose oxidation by upd Pb, Tl and Bi ad-atoms the catalytic activity of the electrode metal used decreases according to the order: Pt > Pd > Rh > Ir.  相似文献   

19.
The electrocatalytic activity of platinised platinum (Pt Pt) electrodes in the electrooxidation of oxalic acid was found to be dependent on the degree of ageing. Pt Pt electrodes prepared by electrodeposition were aged by cycling the potential with an upper positive potential limit corresponding to Pt surface oxidation. This procedure results in surface reconstruction with an increase of mean particle size. The changes of surface area and roughness of Pt Pt during ageing have been discussed in terms of sintering processes for supported catalysts or ceramic materials. An increase of mean particle size is accompanied by a decrease in oxygen adsorption, e.g. through changes in the surface concentration of defects on the particle surface. Two possible mechanisms for the electrooxidation of oxalic acid involving either an oxygen adsorbate species (CE mechanism) or direct electrode transfer can be distinguished. Changes of oxidation rate are related to changes of oxygen coverage with ageing.  相似文献   

20.
The electrooxidation of double-stranded DNA (dsDNA) from calf thymus was carried by using cyclic voltammetry. A glassy carbon disk-, a platinum disk-, a platinum mesh- and a carbon vapor-deposited platinum mesh electrodes were used. It is shown that the appropriate chemical and biological (steam treatment) purification of the complete cell allows, for the graphite electrode, formation of a wide anodic dsDNA signal with two visible anodic peaks. There was no necessity of preaccumulation of dsDNA on the electrode surface and of use of mediators to get well defined voltammetric signals. These peaks apparently reflect electrooxidation of the DNA's guanine and adenine. The spectrophotometric data obtained during the electrooxidation indicate that the absorbance increases with an increase in potential and electrooxidation current of dsDNA. However, the absorption band maximum either does or does not change its position depending on the mesh material. This different spectroscopic behavior may mean that the changes in the dsDNA structure upon electrooxidation are different in the case of Pt and C electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号